\[\boxed{\mathbf{825\ (825).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ исходный\ сплав\ \]
\[содержал\ x\ кг\ меди.\]
\[Тогда\ сплав\ содержал\ \]
\[\frac{x}{x + 10} \cdot 100\%\ меди.\ После\ того,\ \]
\[как\ его\ сплавили\ с\ 10\ кг\ меди,\ \]
\[сплав\ стал\ содержать\ \ \]
\[\frac{x + 10}{x + 20} \cdot 1000\%\ \ меди.\]
\[По\ условию\ известно,\ \]
\[что\ сплав\ стал\ содержать\ \]
\[на\ 5\% = \frac{1}{20}\ меди\ больше.\]
\[Составляем\ уравнение:\]
\[\frac{x + 10}{x + 20} - \frac{x}{x + 10} = \frac{1}{20}\]
\[- x^{2} - 30x + 1800 = 0\]
\[x^{2} + 30x - 1800 = 0\]
\[D = 900 + 7200 = 8100\]
\[x = \frac{- 30 + 90}{2} = 30\ (кг) - меди\ \]
\[содержал\ исходный\ сплав.\]
\[x = \frac{- 30 - 90}{2} = - 60 \Longrightarrow не\ \]
\[удовлетворяет\ условию.\]
\[Ответ:30\ кг.\]
\[\boxed{\mathbf{82}\mathbf{5}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{3x + 2}{x^{2} + 2x + 4} + \frac{x^{2} + 39}{x^{3} - 8} =\]
\[= \frac{5}{x - 2}\]
\[- x^{2} - 14x + 15 = 0\]
\[x^{2} + 14x - 15 = 0\]
\[x_{1} + x_{2} = - 14,\ \ x_{1}x_{2} = - 15,\ \]
\[\ x_{1} = - 15,\ \ x_{2} = 1\]
\[Ответ:\ x = - 15;x = 1.\]
\[2)\ \frac{x}{x - 1} + \frac{x + 1}{x + 3} = \frac{8}{x^{2} + 2x - 3}\]
\[x^{2} + 2x - 3 = 0\]
\[x_{1} + x_{2} = - 2,\ \ x_{1}x_{2} = - 3,\]
\[\ x_{1} = - 3,\ \ x_{2} = 1\]
\[x^{2} + 3x + x^{2} - 1 - 8 = 0\]
\[2x^{2} + 3x - 9 = 0\]
\[D = 9 + 72 = 81\]
\[x = \frac{- 3 - 9}{4} = - 3\]
\[x = \frac{- 3 + 9}{4} = 1,5\]
\[Ответ:x = 1,5.\]