\[\boxed{\mathbf{818\ (818).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ x\frac{км}{ч} - скорость\ \]
\[теплохода,\ тогда\ \]
\[(x + 4)\ \frac{км}{ч} - скорость\ по\]
\[течению\ реки.\ Теплоход\ \]
\[проплыл\ по\ озеру\ \frac{16}{x}\ \ ч,\ \]
\[и\ \frac{18}{x + 4}\ ч\ по\ реке.\]
\[Общее\ время\ затраченное\ \]
\[на\ путь - 1\ час.\]
\[Составляем\ уравнение:\]
\[\frac{16}{x} + \frac{18}{x + 4} - 1 = 0;\ \ \ \ x \neq 0;\ \ \ \]
\[x \neq - 4\]
\[16 \cdot (x + 4) + 18x - x(x + 4) =\]
\[= 0\]
\[16x + 64 + 18x - x^{2} - 4x = 0\]
\[- x^{2} + 30x + 64 = 0\]
\[D = 900 + 256 = 1156\]
\[x = \frac{- 30 - 34}{- 2} = 32\ \left( \frac{км}{ч} \right) -\]
\[скорость\ теплохода.\]
\[x = \frac{- 30 + 34}{- 2} = - 2 \Longrightarrow не\ \]
\[удовлетворяет\ условию.\]
\[Ответ:32\ \frac{км}{ч}.\]
\[\boxed{\mathbf{81}\mathbf{8}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{2y}{y - 3} = \frac{3y + 3}{y}\]
\[\frac{2y}{y - 3} - \frac{3y + 3}{y} = 0\]
\[\frac{2y^{2} - 3y^{2} + 6y + 9}{y(y - 3)} = 0;\ \ \ \ \]
\[y \neq 0;\ \ \ \ y \neq 3\]
\[D = 36 + 36 = 72\]
\[y_{1,2} = \frac{- 6 \pm 6\sqrt{2}}{- 2} = 3 \pm 3\sqrt{2}\]
\[Ответ:\ y = 3 \pm 3\sqrt{2}.\]
\[2)\ \frac{3x + 4}{x - 2} = \frac{2x - 9}{x + 1}\]
\[\frac{3x + 4}{x - 2} - \frac{2x - 9}{x + 1} = 0\]
\[x^{2} + 22x - 33 = 0.\]
\[x_{1} + x_{2} = - 22;\ \ \ \ \ x_{1}x_{2} = - 23,\ \ \]
\[x_{1} = - 23,\ \ x_{2} = 1\]
\[Ответ:\ x = - 23;x = 1.\]
\[3)\ \frac{5x + 2}{x - 1} = \frac{4x + 13}{x + 7}\]
\[\frac{5x + 2}{x - 1} - \frac{4x + 13}{x + 7} = 0\]
\[\ x_{1} + x_{2} = - 28;\ \ \ \ \ x_{1}x_{2} = 27,\ \ \]
\[x_{1} = - 27,\ \ x_{2} = \ - 1\ \]
\[Ответ:\ x = - 27;\ x = - 1.\]
\[4)\ \frac{2x^{2} - 3x + 1}{x - 1} = 3x - 4;\ \ \ \ \ \ \ \ \ \]
\[x \neq 1\]
\[- x^{2} + 4x - 3 = 0\]
\[x^{2} - 4x + 3 = 0\]
\[x_{1} + x_{2} = 4,\ \ x_{1}x_{2} = 3,\ \ \]
\[x_{1} = 3,\ \ \]
\[x_{2} = 1\ (не\ подходит)\]
\[Ответ:x = 3.\]