\[\boxed{\mathbf{800\ (800).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[y = \left\{ \begin{matrix} - \frac{8}{x},\ \ x < - 2 \\ x^{2},\ \ x \geq 0\ \ \\ \end{matrix} \right.\ \]
\[y = - \frac{8}{x}\]
\[x\] | \[2\] | \[- 2\] | \[4\] | \[- 4\] |
---|---|---|---|---|
\[y\] | \[- 4\] | \[4\] | \[- 2\] | \[2\] |
\[y = x²\]
\[x\] | \[0\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|---|
\[y\] | \[0\] | \[1\] | \[4\] | \[1\] | \[4\] |
\[\boxed{\mathbf{80}\mathbf{0}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ y = \frac{x^{2} - 6x + 5}{x - 1}\]
\[x^{2} - 6x + 5 = 0\]
\[x_{1} + x_{2} = 6,\ \ x_{1} = 5\]
\[x_{1} \cdot x_{2} = 5,\ \ x_{2} = 1\]
\[x^{2} - 6x + 5 = (x - 5)(x - 1)\]
\[y = \frac{(x - 5)(x - 1)}{(x - 1)} = x - 5;\ \ \ \]
\[x \neq 1\]
\[y = x - 5,\ \ x \neq 1\ \]
\[x\] | \[2\] | \[3\] |
---|---|---|
\[y\] | \[- 3\] | \[- 2\] |
\[2)\ y = \frac{3x^{2} - 10x + 3}{x - 3} - \frac{x^{2} - 4}{x + 2} =\]
\[= 3x - 1 - x + 2 = 2x + 1\]
\[3x^{2} - 10x + 3 = 0\]
\[x_{1} + x_{2} = \frac{10}{3},\ \ x_{1} = \frac{1}{3}\]
\[x_{1} \cdot x_{2} = 1,\ \ x_{2} = \frac{9}{3} = 3\]
\[y = 2x + 1;\ \ \ x \neq 3;\ \ x \neq - 2\]