\[\boxed{\mathbf{773\ (773).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{4x - 1}{x - 2} = \frac{x + 5}{x - 2}\]
\[\frac{4x - 1}{x - 2} - \frac{x + 5}{x - 2} = 0\]
\[\frac{4x - 1 - x - 5}{x - 2} = 0;\ \ \ \ \ \ \ \ x \neq 2\]
\[3x = 6\]
\[x = 2\]
\[Ответ:нет\ корней.\]
\[y^{2} - 16 = 0\]
\[y^{2} = 16\]
\[y = - 4;\ \ \ \ \ y = 4\]
\[Ответ:y = - 4.\]
\[\ x \neq - 1;x \neq - 2\]
\[2x - 6 = 0\]
\[2x = 6\]
\[x = 3\]
\[Ответ:x = 3.\]
\[y + 4 - (y - 5) - 9 = 0\]
\[y + 4 - y + 5 - 9 = 0\]
\[0y = 0\]
\[Ответ:y - любое\ число,\ \]
\[кроме\ 5\ и\ ( - 4).\]
\[\boxed{\mathbf{7}\mathbf{7}\mathbf{3}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[2x^{2} - 15x + 4 = 0\ \ \ |\ :2\ \ \ \ \ \ \ \]
\[\ x^{2} - 7,5x + 2 = 0\ \ \]
\[x_{1} + x_{2} = 7,5;\ \ \ \ \ x_{1} \cdot x_{2} = 2\ \]
\[Корни\ нового\ уравнения\ \]
\[в\ 2\ раза\ больше\ данных:\]
\[y_{1} \cdot y_{2} = 2x_{1} \cdot 2x_{2} = 4x_{1}x_{2} =\]
\[= 4 \cdot 2 = 8 = c\]
\[y_{1} + y_{2} = 2x_{1} + 2x_{2} =\]
\[= 2 \cdot \left( x_{1} + x_{2} \right) = 2 \cdot 7,5 = 15 =\]
\[= b\]
\[Получаем\ новое\ уравнение:\ \ \]
\[y^{2} - 15y + 8 = 0.\]