\[\boxed{\mathbf{736\ (736).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[2x^{2} - 15x + 4 = 0\ \ \ |\ :2\ \ \ \ \ \ \ \]
\[\ x^{2} - 7,5x + 2 = 0\ \ \]
\[x_{1} + x_{2} = 7,5;\ \ \ \ \ x_{1} \cdot x_{2} = 2\ \]
\[Корни\ нового\ уравнения\ \]
\[в\ 2\ раза\ больше\ данных:\]
\[y_{1} \cdot y_{2} = 2x_{1} \cdot 2x_{2} = 4x_{1}x_{2} =\]
\[= 4 \cdot 2 = 8 = c\]
\[y_{1} + y_{2} = 2x_{1} + 2x_{2} =\]
\[= 2 \cdot \left( x_{1} + x_{2} \right) = 2 \cdot 7,5 = 15 =\]
\[= b\]
\[Получаем\ новое\ уравнение:\ \ \]
\[y^{2} - 15y + 8 = 0.\]
\[\boxed{\mathbf{73}\mathbf{6}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[4 = \sqrt{16}\]
\[3\sqrt{2} = \sqrt{18}\]
\[\sqrt{16};\sqrt{17};\sqrt{18} \Longrightarrow 4;\ \ \sqrt{17};\ \ \ \]
\[3\sqrt{2}.\]