\[\boxed{\mathbf{735\ (735).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[2x^{2} - 14x + 9 = 0\ \ \ \ |\ :2\ \ \]
\[\ x^{2} - 7x + 4,5 = 0\ \ \]
\[x_{1} + x_{2} = 7;\ \ \ \ \ \ x_{1} \cdot x_{2} = 4,5\ \ \]
\[Корни\ нового\ уравнения\ \]
\[в\ 3\ раза\ меньше\ данных:\]
\[x_{1} + x_{2} = - 5;\ \ \ \ x_{1} \cdot x_{2} = - 16\]
\[x_{1} + x_{2} = - 5;\ \ \ \ x_{1} \cdot x_{2} = - 16\]
\[Получаем\ уравнение:\ \]
\[y^{2} - 2\frac{1}{3}y + 0,5 = 0.\]
\[\boxed{\mathbf{73}\mathbf{5}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\frac{\left( a^{- 3} \right)^{3}}{a^{- 2} \cdot a^{- 5}} = \frac{a^{- 9}}{a^{- 7}} = \frac{a^{7}}{a^{9}} = \frac{1}{a^{2}};\ \ \]
\[при\ a = \frac{1}{3}:\]
\[\frac{1}{a^{2}} = \frac{1}{\left( \frac{1}{3} \right)^{2}} = 1\ :\frac{1}{9} = 9.\]