\[\boxed{\mathbf{734\ (734).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[x^{2} - 12x + 4 = 0\ \]
\[x_{1} + x_{2} = 12;\ \ \ \ x_{1} \cdot x_{2} = 4\ \]
\[Корни\ нового\ уравнения\ \]
\[на\ 3\ больше\ данных:\]
\[y_{1} \cdot y_{2} = \left( x_{1} + 3 \right)\left( x_{2} + 3 \right) =\]
\[= x_{1}x_{2} + 3x_{1} + 3x_{2} + 9 =\]
\[= x_{1}x_{2} + 3 \cdot \left( x_{1} + x_{2} \right) + 9 =\]
\[= 4 + 3 \cdot 12 + 9 = 49\]
\[y_{1} + y_{2} = x_{1} + 3 + x_{2} + 3 =\]
\[= \left( x_{1} + x_{2} \right) + 6 = 12 + 6 = 18\ \]
\[Новое\ уравнение:\]
\[y^{2} - 18y + 49 = 0\]
\[\boxed{\mathbf{73}\mathbf{4}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\left( \frac{a + b}{a} - \frac{4b}{a + b} \right) \cdot \ \frac{a + b}{a - b} =\]
\[= \frac{(a + b)^{2} - 4ab}{a(a + b)} \cdot \ \frac{a + b}{a - b} =\]
\[= \frac{a^{2} + 2ab + b - 4ab}{a(a + b)} \cdot \ \frac{a + b}{a - b} =\]
\[= \frac{(a - b)²(a + b)}{a(a + b)(a - b)} = \frac{a - b}{a}\]