\[\boxed{\mathbf{645\ (645).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[3x^{2} - 2x + 4 + \ *\ = 0\]
\[Пусть\ y = \ \ *.\]
\[3x^{2} - 2x + 4 = - y\]
\[1)\ Если\ x = 0\ \ и\ \ x = 4,\ \ \ \]
\[то\ можем\ записать\ уравнение\ \]
\[так:\]
\[3x \cdot (x - 4) = 0.\]
\[Искомое\ уравнение:\]
\[3x^{2} - 2x + 4 + \ *\ = 0.\]
\[3x(x - 4) = 0\]
\[3x^{2} - 12x = 0\ \ \ \ \ \ \ \ \ и\ \text{\ \ \ \ }\]
\[3x^{2} - 2x + 4 + \ *\ = 0\ \]
\[3x^{2} - 2x - 10x + 4 - 4 = 0\]
\[\left( 3x^{2} - 2x + 4 \right)\underset{y}{\overset{- 10x - 4}{︸}} = 0\]
\[y = - 10x - 4.\]
\[2)\ Если\ x = - 1;\ \ \ x = 1,\ \ \ \]
\[запишем:\ \ \]
\[3 \cdot (x + 1)(x - 1) = 0.\]
\[Получаем:\ \ \ \]
\[3x^{2} - 3 = 0\ \ \ \ \ и\ \ \ \ \]
\[3x^{2} - 2x + 4 + \ *\ = 0.\]
\[\left( 3x^{2} - 2x + 4 \right) + \underset{y}{\overset{2x - 7}{︸}} = 0\]
\[y = 2x - 7.\]