\[\boxed{\mathbf{571\ (571).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{\sqrt{3} + \sqrt{2} + \sqrt{2} + 1}{\left( \sqrt{2} + 1 \right)\left( \sqrt{3} + \sqrt{2} \right)} =\]
\[= \frac{1 + 2\sqrt{2} + \sqrt{3}}{\left( \sqrt{2} + 1 \right)\left( \sqrt{3} + \sqrt{2} \right)}\]
\[= \frac{4\sqrt{3} + 3\sqrt{6} + 5\sqrt{2} + 7}{4\sqrt{3} + 3\sqrt{6} + 5\sqrt{2} + 7} = 1\]
\[3)1 + \frac{1}{\sqrt{5} + \sqrt{4}} = \frac{\sqrt{5} + \sqrt{4} + 1}{\sqrt{5} + \sqrt{4}} =\]
\[= - 1 + \sqrt{5}\]
\[4)\ Таким\ образом,\ последняя\ \]
\[сумма\ будет\ иметь\ результат:\]
\[- 1 + \sqrt{100} = - 1 + 10 = 9\]
\[Ответ:9.\ \]