\[\boxed{\mathbf{570\ (570).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{8 + 2\sqrt{7}} = \sqrt{7 + 2\sqrt{7} + 1} =\]
\[= \sqrt{\left( \sqrt{7} + 1 \right)^{2}} = \sqrt{7} + 1\]
\[2)\ \sqrt{15 + 6\sqrt{6}} = \sqrt{9 + 6\sqrt{6} + 6} =\]
\[= \sqrt{\left( 3 + \sqrt{6} \right)^{2}} = 3 + \sqrt{6}\]
\[3)\ \sqrt{7 + 2\sqrt{10}} =\]
\[= \sqrt{5 + 2\sqrt{10} + 2} =\]
\[= \sqrt{(\sqrt{5} + \sqrt{2})²} = \sqrt{5} + \sqrt{2}\]
\[\boxed{\mathbf{5}\mathbf{7}\mathbf{0}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ a² - 3 = (a - \sqrt{3})(a + \sqrt{3})\]
\[2)\ 4b² - 2 =\]
\[= (2b - \sqrt{2})(2b + \sqrt{2})\]
\[3)\ 5 - 6c^{2} =\]
\[= (\sqrt{5} - c\sqrt{6})(\sqrt{5} + c\sqrt{6})\]
\[4)\ a - 9 = (\sqrt{a} - 3)(\sqrt{a} + 3)\]
\[5)\ m - n =\]
\[= (\sqrt{m} - \sqrt{n})(\sqrt{m} + \sqrt{n})\]
\[6)\ 16x - 25y =\]
\[= (4\sqrt{x} - 5\sqrt{y})(4\sqrt{x} + 5\sqrt{y})\]
\[7)\ a - 2\sqrt{a} + 1 = (\sqrt{a} - 1)²\]
\[8)\ 4m - 28\sqrt{\text{mn}} + 49n =\]
\[= (2\sqrt{m} - 7\sqrt{n})²\]
\[9)\ b + 6\sqrt{b} + 9 = (\sqrt{b} + 3)²\]
\[10)\ 3 + 2\sqrt{3c} + c = (\sqrt{3} + \sqrt{c})²\]
\[11)\ 2 + \sqrt{2} = \sqrt{2} \cdot \sqrt{2} + \sqrt{2} =\]
\[= \sqrt{2} \cdot (\sqrt{2} + 1)\]
\[12)\ 6\sqrt{7} - 7 = 6\sqrt{7} - \sqrt{7} \cdot \sqrt{7} =\]
\[= \sqrt{7} \cdot (6 - \sqrt{7})\]
\[13)\ a - \sqrt{a} = \sqrt{a} \cdot (\sqrt{a} - 1)\]
\[14)\ \sqrt{b} + \sqrt{3b} = \sqrt{b} \cdot (1 + \sqrt{3})\]
\[15)\ \sqrt{15} - \sqrt{5} = \sqrt{5} \cdot (\sqrt{3} - 1)\]