Решебник по алгебре 8 класс Мерзляк ФГОС Задание 572

Авторы:
Год:2024
Тип:учебник
Серия:Алгоритм успеха

Задание 572

Выбери издание
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021
 
фгос Мерзляк ФГОС
Издание 1
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021

\[\boxed{\mathbf{572\ (572).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\ \frac{1}{\sqrt{3} + 1} \cdot \left( \sqrt{3} - 1 \right) =\]

\[= \frac{\left( \sqrt{3} - 1 \right)}{\left( \sqrt{3} - 1 \right)\left( \sqrt{3} + 1 \right)} = \frac{\sqrt{3} - 1}{3 - 1} =\]

\[= \frac{\sqrt{3} - 1}{2}\]

\[2)\ \frac{1}{\sqrt{5} + \sqrt{3}} \cdot \left( \sqrt{5} - \sqrt{3} \right) =\]

\[= \frac{\sqrt{5} - \sqrt{3}}{\left( \sqrt{5} + \sqrt{3} \right)\left( \sqrt{5} - \sqrt{3} \right)} =\]

\[= \frac{\sqrt{5} - \sqrt{3}}{5 - 3} = \frac{\sqrt{5} - \sqrt{3}}{2}\]

\[3)\frac{1}{\sqrt{7} + \sqrt{5}} \cdot \left( \sqrt{7} - \sqrt{5} \right) =\]

\[= \frac{\sqrt{7} - \sqrt{5}}{\left( \sqrt{7} + \sqrt{5} \right)\left( \sqrt{7} - \sqrt{5} \right)} =\]

\[= \frac{\sqrt{7} - \sqrt{5}}{7 - 5} = \frac{\sqrt{7} - \sqrt{5}}{2}\]

\[4)\frac{1}{\sqrt{91} + \sqrt{89}} \cdot \left( \sqrt{91} - \sqrt{89} \right) =\]

\[= \frac{\sqrt{91} - \sqrt{89}}{\left( \sqrt{91} + \sqrt{89} \right)\left( \sqrt{91} - \sqrt{89} \right)} =\]

\[= \frac{\sqrt{91} - \sqrt{89}}{2}\text{\ \ }\]

\[5)\ У\ всех\ дробей\ знаменатель\ \]

\[будет\ общий\ (2),\ а\ в\ числителе\ \]

\[получим:\]

\[Получаем\ дробь:\ \frac{\sqrt{91} - 1}{2}\text{.\ \ }\]

Издание 2
фгос Мерзляк ФГОС

\[\boxed{\mathbf{5}\mathbf{7}\mathbf{2}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\frac{a^{2} - 7}{a + \sqrt{7}} = \frac{\left( a - \sqrt{7} \right)\left( a + \sqrt{7} \right)}{\left( a + \sqrt{7} \right)} =\]

\[= a - \sqrt{7}\]

\[2)\ \frac{\sqrt{3} - b}{3 - b^{2}} = \frac{\left( \sqrt{3} - b \right)}{\left( \sqrt{3} - b \right)\left( \sqrt{3} + b \right)} =\]

\[= \frac{1}{\sqrt{3} + b}\]

\[3)\ \frac{c - 9}{\sqrt{c} - 3} = \frac{\left( \sqrt{c} - 3 \right)\left( \sqrt{c} + 3 \right)}{\left( \sqrt{c} - 3 \right)} =\]

\[= \sqrt{c} + 3\]

\[4)\ \frac{a - b}{\sqrt{a} + \sqrt{b}} =\]

\[= \frac{\left( \sqrt{a} - \sqrt{b} \right)\left( \sqrt{a} + \sqrt{b} \right)}{\left( \sqrt{a} + \sqrt{b} \right)} =\]

\[= \sqrt{a} - \sqrt{b}\]

\[5)\ \frac{5\sqrt{a} - 7\sqrt{b}}{25a - 49b} =\]

\[= \frac{\left( 5\sqrt{a} - 7\sqrt{b} \right)}{\left( 5\sqrt{a} - 7\sqrt{b} \right)\left( 5\sqrt{a} + 7\sqrt{b} \right)} =\]

\[= \frac{1}{5\sqrt{a} + 7\sqrt{b}}\]

\[6)\ \frac{100a^{2} - 9b}{10a + 3\sqrt{b}} =\]

\[= \frac{\left( 10a - 3\sqrt{b} \right)\left( 10a + 3\sqrt{b} \right)}{\left( 10a + 3\sqrt{b} \right)} =\]

\[= 10a - 3\sqrt{b}\]

\[7)\ \frac{\sqrt{2} - 1}{\sqrt{6} - \sqrt{3}} = \frac{\left( \sqrt{2} - 1 \right)}{\sqrt{3} \cdot \left( \sqrt{2} - 1 \right)} =\]

\[= \frac{1}{\sqrt{3}}\]

\[8)\ \frac{\sqrt{35} + \sqrt{10}}{\sqrt{7} + \sqrt{2}} =\]

\[= \frac{\sqrt{5} \cdot \left( \sqrt{7} + \sqrt{2} \right)}{\left( \sqrt{7} + \sqrt{2} \right)} = \sqrt{5}\]

\[9)\ \frac{\sqrt{15} - \sqrt{6}}{5 - \sqrt{10}} =\]

\[= \frac{\sqrt{3} \cdot \left( \sqrt{5} - \sqrt{2} \right)}{\sqrt{5} \cdot \left( \sqrt{5} - \sqrt{2} \right)} = \sqrt{\frac{3}{5}}\]

\[10)\ \frac{13 - \sqrt{13}}{\sqrt{13}} =\]

\[= \frac{\sqrt{13} \cdot \left( \sqrt{13} - 1 \right)}{\sqrt{13}} = \sqrt{13} - 1\]

\[11)\ \frac{a + 2\sqrt{\text{ab}} + b}{\sqrt{a} + \sqrt{b}} =\]

\[= \frac{\left( \sqrt{a} + \sqrt{b} \right)^{2}}{\sqrt{a} + \sqrt{b}} = \sqrt{a} + \sqrt{b}\]

\[12)\ \frac{4b^{2} - 4b\sqrt{c} + c}{2b - \sqrt{c}} =\]

\[= \frac{(2b - \sqrt{c})²}{(2b - \sqrt{c})} = 2b - \sqrt{c}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам