\[\boxed{\mathbf{522\ (522).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a - четное,\ \ b - нечетное\]
\[b = 2a + 1\]
\[1)\ (a + b)b =\]
\[= (a + 2a + 1)(2a + 1) =\]
\[2)\frac{\text{ab}}{2} = \frac{a(2a + 1)}{2} =\]
\[\boxed{\mathbf{52}\mathbf{2}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \sqrt{{0,4}^{2}} = |0,4| = 0,4.\]
\[2)\ \sqrt{( - 1,8)^{2}} = | - 1,8| = 1,8.\]
\[3)\ 2\sqrt{( - 15)^{2}} = 2 \cdot | - 15| =\]
\[= 2 \cdot 15 = 30.\]
\[4)\ 3\sqrt{{1,2}^{2}} = 3 \cdot |1,2| = 3 \cdot 1,2 =\]
\[= 3,6.\]
\[5)\ \sqrt{6^{4}} = |6^{2}| = 36.\]
\[6)\ \sqrt{( - 2)^{10}} = | - 2|^{5} = 2^{5} = 32.\]
\[7)\ 5\sqrt{( - 10)^{4}} = 5 \cdot | - 10|^{2} =\]
\[= 5 \cdot 100 = 500.\]
\[8) - 4\sqrt{( - 1)^{14}} = - 4 \cdot | - 1|^{7} =\]
\[= - 4.\]
\[9) - 10\sqrt{3^{6}} = - 10 \cdot |3^{3}| =\]
\[= - 10 \cdot 27 = - 270.\ \]