\[\boxed{\text{415\ (415).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = \sqrt{2x - 1 - x^{2}} - 1\]
\[y = \sqrt{- \left( x^{2} - 2x + 1 \right)} - 1\]
\[y = \sqrt{- (x - 1)^{2}} - 1\]
\[- (x - 1)^{2} \geq 0\]
\[(x - 1)^{2} \leq 0\]
\[x - 1 = 0\]
\[x = 1 - единственное\ \]
\[решение;\]
\[y = - 1.\]
\[График\ функции\ y =\]
\[= \sqrt{2x - 1 - x^{2}} -\]
\[- 1 - точка\ (1; - 1).\]
\[\boxed{\text{415.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\text{\ x}^{2} = 25\]
\[x = \pm 5\]
\[Ответ:x = 5;x = - 5.\]
\[2)\ x^{2} = 0,49\]
\[x = \pm 0,7\]
\[Ответ:x = 0,7;\ x = - 0,7.\]
\[3)\ x^{2} = 3\]
\[x = \pm \sqrt{3}\]
\[Ответ:x = \pm \sqrt{3}\text{..}\]
\[4)\ x^{2} = - 25\]
\[Ответ:нет\ корней.\]