\[\boxed{\text{401\ (401).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\mathbf{Равенство\ }\sqrt{\mathbf{a}}\mathbf{= b\ }\mathbf{выполняется\ при\ условии,\ что\ }\mathbf{b \geq 0\ }\mathbf{и\ }\mathbf{b}^{\mathbf{2}}\mathbf{= a.}\mathbf{\ }\]
\[1)\ \sqrt{5x} - 4 = 0\] \[\sqrt{5x} = 4,\ \ x \geq 0\] \[5x = 16\] \[x = \frac{16}{5}\] \[x = 3,2.\] \[Ответ:x = 3,2.\] |
\[4)\frac{42}{\sqrt{x}} = 6\] \[6\sqrt{x} = 42\] \[\sqrt{x} = 42\ :6\] \[\sqrt{x} = 7\] \[x = 49.\] \[Ответ:x = 49.\] |
---|---|
\[2)\ \sqrt{5x - 4} = 0\] \[5x - 4 = 0\] \[5x = 4\] \[x = \frac{4}{5} = 0,8\] \[Ответ:x = 0,8.\] |
\[5)\frac{18}{\sqrt{x + 3}} = 9\] \[9\sqrt{x + 3} = 18\] \[\sqrt{x + 3} = 18\ :9\] \[\sqrt{x + 3} = 2\] \[\left( \sqrt{x + 3} \right)^{2} = 2^{2}\] \[x + 3 = 4\] \[x = 1.\] \[Ответ:x = 1.\] |
\[3)\ \sqrt{5x - 4} = 6\] \[\left( \sqrt{5x - 4} \right)^{2} = 6^{2}\] \[5x - 4 = 36\] \[5x = 40\] \[x = 8\] \[Ответ:x = 8.\] |
\[6)\ \sqrt{x^{2} - 36} = 8\] \[\left( \sqrt{x^{2} - 36} \right)^{2} = 8^{2}\] \[x^{3} - 36 = 64\] \[x^{2} = 100\] \[x = \pm 10\] \[Ответ:x = 10;\ - 10.\ \] |
\[\boxed{\text{401.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \sqrt{9} = 3\]
\[2)\ \sqrt{49} = 7\]
\[3)\ \sqrt{100} = 10\]
\[4)\sqrt{225} = 15\]
\[5)\ \sqrt{0,25} = 0,5\]
\[6)\ \sqrt{0,01} = 0,1\]
\[7)\ \sqrt{1,21} = 1,1\]
\[8)\ \sqrt{1,96} = 1,4\]
\[9)\ \sqrt{400} = 20\]
\[10)\ \sqrt{3600} = 60\]
\[11)\ \sqrt{\frac{1}{64}} = \frac{1}{8}\]
\[12)\ \ \sqrt{\frac{4}{9}} = \frac{2}{3}\]
\[13)\ \sqrt{1\frac{9}{16}} = \sqrt{\frac{25}{16}} = \frac{5}{4}\]
\[14)\ \sqrt{3\frac{6}{25}} = \sqrt{\frac{81}{25}} = \frac{9}{5}\]
\[15)\ \sqrt{0,0004} = 0,02\]
\[16)\ \sqrt{0,000025} = 0,005\]