\[\boxed{\text{277\ (277).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1){\ 6}^{- 9} \cdot 6^{6} = 6^{- 3} = \frac{1}{216}\]
\[2)\ 7^{- 16}\ :7^{- 18} = 7^{2} = 49\]
\[3)\ 5^{- 7}\ :5^{- 6} \cdot 5^{3} = 5^{- 1} \cdot 5^{3} =\]
\[= 5^{2} = 25\]
\[4)\ \frac{4^{- 7} \cdot \left( 4^{- 5} \right)^{3}}{\left( 4^{- 3} \right)^{7}} = \frac{4^{- 7} \cdot 4^{- 15}}{4^{- 21}} =\]
\[= 4^{- 22\ }:4^{- 21} = 4^{- 1} = \frac{1}{4}\]
\[5)\ {0,8}^{- 4} \cdot \left( 1\frac{1}{4} \right)^{- 4} =\]
\[= \left( \frac{4}{5} \right)^{- 4} \cdot \left( \frac{5}{4} \right)^{- 4} = \frac{4^{- 4} \cdot 5^{- 4}}{5^{- 4} \cdot 4^{- 4}} = 1\]
\[6)\frac{11^{- 2}}{22^{- 2}} = \frac{11^{- 2}}{11^{- 2} \cdot 2^{- 2}} =\]
\[= \frac{1}{2^{- 2}} = 2^{2} = 4\]
\[\boxed{\text{277.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ 9^{5} \cdot 9^{- 7} = 9^{- 2} = \frac{1}{81}\]
\[2)\ 10^{- 8} \cdot 10^{12} = 10^{4} = 10\ 000\]
\[3)\ 3^{- 18}\ :3^{- 21} = 3^{3} = 27\]
\[4)\ 2^{- 9} \cdot 2^{- 12}\ :2^{- 22} =\]
\[= 2^{- 21}\ :2^{- 22} = 2\]
\[5)\ \left( 17^{4} \right)^{- 12} \cdot \left( 17^{- 6} \right)^{- 8} =\]
\[= 17^{- 48} \cdot 17^{48} = 17^{0} = 1\]
\[6)\ \frac{6^{- 5} \cdot \left( 6^{- 3} \right)^{4}}{\left( 6^{- 7} \right)^{2} \cdot 6^{- 3}} = \frac{6^{- 5} \cdot 6^{- 12}}{6^{- 14} \cdot 6^{- 3}} =\]
\[= \frac{6^{14} \cdot 6^{3}}{6^{5} \cdot 6^{12}} = 6^{17}\ :6^{17} = 1\]
\[7)\ 3^{- 3} \cdot \left( \frac{2}{3} \right)^{- 3} = \frac{3^{- 3} \cdot 2^{- 3}}{3^{- 3}} =\]
\[= 2^{- 3} = \frac{1}{8}\]
\[8)\frac{14^{- 5}}{7^{- 5}} = \frac{7^{5}}{14^{5}} = \frac{7^{5}}{7^{5} \cdot 2^{5}} = \frac{1}{32}\]