\[\boxed{\text{241\ (241).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ 20^{- 2} = \frac{1}{20^{2}} = \frac{1}{400}\]
\[2)\ {0,3}^{- 1} = \frac{1}{0,3} = \frac{10}{3} = 3\frac{1}{3}\]
\[3)\ ( - 6)^{- 3} = \frac{1}{( - 6)^{3}} = - \frac{1}{216}\]
\[4)\ \left( \frac{4}{7} \right)^{- 2} = \frac{7^{2}}{4^{2}} = \frac{49}{16} = 3\frac{1}{16}\]
\[5)\ \left( - \frac{1}{6} \right)^{- 3} = ( - 6)^{3} = - 216\]
\[6)\ \left( 3\frac{1}{3} \right)^{- 2} = \left( \frac{10}{3} \right)^{- 2} = \frac{3^{2}}{10^{2}} =\]
\[= \frac{9}{100} = 0,09\]
\[\boxed{\text{241.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ 3^{- 1} - 4^{- 1} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}\]
\[2)\ 2^{- 3} + 6^{- 2} = \frac{1}{8} + \frac{1}{36} = \frac{11}{72}\]
\[3)\ \left( \frac{2}{7} \right)^{- 1} + ( - 2,3)^{0} - 5^{- 2} =\]
\[= 3,5 + 1 - \frac{1}{25} =\]
\[= 3,5 + 1 - 0,04 = 4,46\]
\[4)\ 9 \cdot {0,1}^{- 1} = 9 \cdot 10 = 90\]
\[5)\ {0,5}^{- 2} \cdot 4^{- 1} = \frac{1}{0,25} \cdot \frac{1}{4} = 1\]
\[6)\ \left( 2^{- 1} - 8^{- 1} \cdot 16 \right)^{- 1} =\]
\[= \left( \frac{1}{2} - \frac{1}{8} \cdot 16 \right)^{- 1} = \left( \frac{1}{2} - 2 \right)^{- 1} =\]
\[= \left( - \frac{3}{2} \right)^{- 1} = - \frac{2}{3}\]