\[\boxed{\text{204\ (204).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Сумма:\]
\[(x + 2) + (2x + 1) =\]
\[= x + 2 + 2x + 1 = 3x + 3\]
\[Разность:\]
\[(x + 2) - (2x + 1) =\]
\[= x + 2 - 2x - 1 = - x + 1\]
\[Произведение:\]
\[(x + 2) \cdot (2x + 1) =\]
\[= 2x^{2} + x + 4x + 2 =\]
\[= 2x^{2} + 5x + 2\]
\[Значит,\ на\ доске\ не\ может\ \]
\[появиться\ многочлен\ \]
\[2x^{2} + x + 5.\]
\[Ответ:не\ может.\]
\[\boxed{\text{204.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \frac{x + 3}{x - 4} = 0\]
\[x - 4 \neq 0\]
\[x \neq 4.\]
\[x + 3 = 0\]
\[x = - 3.\]
\[Не\ равносильны.\]
\[2)\ \frac{x^{2} - 16}{x - 3} = 0\]
\[x - 3 \neq 0\]
\[x \neq 3.\]
\[x^{2} - 16 = 0\]
\[x^{2} = 16\]
\[x = \pm 4.\]
\[Равносильны.\]
\[3)\ \frac{x + 3}{x - 4} = 0\]
\[\frac{x + 3}{x - 4} = 0\]
\[x - 4 \neq 0\]
\[x \neq 4.\]
\[x + 3 = 0\]
\[x = - 3.\]
\[Равносильны.\]
\[4)\ \frac{x^{2} - 16}{x - 3} = 0\]
\[x - 3 \neq 0\]
\[x \neq 3.\]
\[x^{2} - 16 = 0\]
\[x^{2} = 16\]
\[x = \pm 4.\]
\[Не\ равносильны.\]