Решебник по алгебре 8 класс Макарычев ФГОС Задание 925

Авторы:
Год:2021
Тип:учебник

Задание 925

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{925\ (925).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Знаки сравнения:

\(\geq \ - \ \)больше или равно;

\(\leq \ - \ \)меньше или равно.

При решении используем следующее:

1. Формулу квадрата суммы:

Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений плюс квадрат второго выражения:

\[\mathbf{(}\mathbf{a}\mathbf{+}\mathbf{b}\mathbf{)}^{\mathbf{2}}\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{+}\mathbf{2}\mathbf{\text{ab}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{.}\]

2. Если в неравенстве перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получится неравенство, равносильное данному.

3. Формулу квадрата разности:

Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого и второго выражений плюс квадрат второго выражения:

\[\mathbf{(}\mathbf{a}\mathbf{-}\mathbf{b}\mathbf{)}^{\mathbf{2}}\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{-}\mathbf{2}\mathbf{\text{ab}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{.}\]

4. Положительное или отрицательное число (со знаком «минус») во второй степени (квадрате) всегда будет числом положительным или 0:

\[\mathbf{( -}\mathbf{2)}^{\mathbf{2}}\mathbf{= 4;}\]

\[\mathbf{2}^{\mathbf{2}}\mathbf{= 4.}\]

Решение.

\[\textbf{а)}\ a² + ab + b² \geq 0\]

\[a² + 2ab + b² - ab \geq 0\]

\[(a + b)^{2} - ab \geq 0\]

\[(a + b)^{2} \geq ab \Longrightarrow ч.т.д.\]

\[\textbf{б)}\ a² - ab + b^{2} \geq 0\]

\[a² - 2ab + b^{2} + ab \geq 0\]

\[(a - b)^{2} \geq - ab \Longrightarrow ч.т.д.\]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{925.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

\[( - 3,9;1)\]

\[\left\{ - 3;\ - 2;\ - 1;0 \right\}\ \in ( - 3,9;1)\]

\[Ответ:2)\ четыре.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам