\[\boxed{\text{886\ (886).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Неравенство, задающее числовой промежуток. | Обозначение и название числового промежутка. | Изображение числового промежутка на координатной прямой. |
---|---|---|
\[\mathbf{a \leq x \leq b}\] |
\[\left\lbrack \mathbf{a;\ b} \right\rbrack\mathbf{-}\] \[числовой\ отрезок\ \] |
|
\[\mathbf{a < x < b}\] |
\[\left( \mathbf{a;\ b} \right)\mathbf{- \ }\] \[\mathbf{интервал}\] |
|
\[\mathbf{a \leq x < b}\] |
\[\left\lbrack \mathbf{a;\ b} \right)\mathbf{-}\] \[\mathbf{полуинтервал}\] |
|
\[\mathbf{a < x \leq b}\] |
\[\left( \mathbf{a;\ b} \right\rbrack\mathbf{-}\] \[\mathbf{полуинтервал}\] |
|
\[\mathbf{x \geq a}\] |
\[\left\lbrack \mathbf{a; + \infty} \right)\mathbf{-}\] \[\mathbf{числовой\ луч}\] |
|
\[\mathbf{x > a}\] |
\[\mathbf{(a; + \infty) -}\] \[\mathbf{открытый\ числовой\ }\] \[\mathbf{луч}\] |
|
\[\mathbf{x \leq b}\] |
\[\left( \mathbf{- \infty;\ b} \right\rbrack\mathbf{-}\] \[\mathbf{числовой\ луч}\] |
|
\[\mathbf{x < b}\] |
\[\left( \mathbf{- \infty;\ b} \right)\mathbf{-}\] \[\mathbf{открытый\ числовой\ }\] \[\mathbf{луч}\] |
Решением системы неравенств с одной переменной называется значение переменной, при котором верно каждое из неравенств системы.
При решении используем следующее:
1. Если в неравенстве перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получится неравенство, равносильное данному.
2. Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.
3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.
4. Распределительное свойство умножения – число, стоящее перед скобкой, нужно умножить на каждое число в скобке:
\[\mathbf{a}\left( \mathbf{b - c} \right)\mathbf{= ab - ac.}\]
5. Если перед скобками стоит знак « – », то при раскрытии скобок знаки слагаемых в скобках заменяются на противоположные.
Решение.
\[\boxed{\text{886.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[1,4 < \sqrt{2} < 1,5,\]
\[\ \ 1,7 < \sqrt{3} < 1,8\]
\[\textbf{а)}\ \sqrt{2} + \sqrt{3}\]
\[1,4 + 1,7 < \sqrt{2} + \sqrt{3} < 1,5 + 1,8\]
\[3,1 < \sqrt{2} + \sqrt{3} < 3,3\]
\[\textbf{б)}\ \sqrt{3} - \sqrt{2} = \sqrt{3} + ( - \sqrt{2})\]
\[+ \left| \begin{matrix} - 1,5 < - \sqrt{2} < - 1,4 \\ 1,7 < \sqrt{3} < 1,8\ \ \\ \end{matrix} \right.\ \]
\[\text{\ \ \ \ \ }\overline{0,2 < \sqrt{3} - \sqrt{2} < 0,4}\]