\[\boxed{\text{862\ (862).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Неравенство, задающее числовой промежуток. | Обозначение и название числового промежутка. | Изображение числового промежутка на координатной прямой. |
---|---|---|
\[\mathbf{a \leq x \leq b}\] |
\[\left\lbrack \mathbf{a;\ b} \right\rbrack\mathbf{-}\] \[числовой\ отрезок\ \] |
|
\[\mathbf{a < x < b}\] |
\[\left( \mathbf{a;\ b} \right)\mathbf{- \ }\] \[\mathbf{интервал}\] |
|
\[\mathbf{a \leq x < b}\] |
\[\left\lbrack \mathbf{a;\ b} \right)\mathbf{-}\] \[\mathbf{полуинтервал}\] |
|
\[\mathbf{a < x \leq b}\] |
\[\left( \mathbf{a;\ b} \right\rbrack\mathbf{-}\] \[\mathbf{полуинтервал}\] |
|
\[\mathbf{x \geq a}\] |
\[\left\lbrack \mathbf{a; + \infty} \right)\mathbf{-}\] \[\mathbf{числовой\ луч}\] |
|
\[\mathbf{x > a}\] |
\[\mathbf{(a; + \infty) -}\] \[\mathbf{открытый\ числовой\ }\] \[\mathbf{луч}\] |
|
\[\mathbf{x \leq b}\] |
\[\left( \mathbf{- \infty;\ b} \right\rbrack\mathbf{-}\] \[\mathbf{числовой\ луч}\] |
|
\[\mathbf{x < b}\] |
\[\left( \mathbf{- \infty;\ b} \right)\mathbf{-}\] \[\mathbf{открытый\ числовой\ }\] \[\mathbf{луч}\] |
Целые числа – это все положительные, все отрицательные числа и ноль (без дробных частей, без остатков): -3, -6, 0, 5, 7, 8.
При решении неравенств используем следующее:
1. Если перед скобками стоит знак « – », то при раскрытии скобок знаки слагаемых в скобках заменяются на противоположные.
2. Если в неравенстве перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получится неравенство, равносильное данному.
3. Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.
4. Если обе части неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.
Решение.
\[\boxed{\text{862.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[a < b\]
\[a < b + 1\]
\[a - 3 < b\]
\[a - 5 < b + 2\]
\[a + 4\ и\ b - 1 \Longrightarrow невозможно\]
\[\ сравнить.\]