\[\boxed{\text{770\ (770).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Знаки сравнения:
\(> \ - \ \)больше
\(\mathbf{<} -\) меньше
При решении используем:
1. Если почленно сложить верные неравенства одного знака, то получится верное неравенство.
Чтобы сложить почленно неравенства, нужно попарно сложить правые и левые части неравенства:
2. Чтобы сложить два числа с разными знаками, нужно из большего модуля (модуль отрицательного числа – |-a|=a, модуль положительного числа – |a|=a) вычесть меньший и полученную разность взять со знаком того слагаемого, модуль которого больше.
Решение.
\[1,4 < \sqrt{2} < 1,5,\]
\[\ \ 1,7 < \sqrt{3} < 1,8\]
\[\textbf{а)}\ \sqrt{2} + \sqrt{3}\]
\[1,4 + 1,7 < \sqrt{2} + \sqrt{3} < 1,5 + 1,8\]
\[3,1 < \sqrt{2} + \sqrt{3} < 3,3\]
\[\textbf{б)}\ \sqrt{3} - \sqrt{2} = \sqrt{3} + ( - \sqrt{2})\]
\[+ \left| \begin{matrix} - 1,5 < - \sqrt{2} < - 1,4 \\ 1,7 < \sqrt{3} < 1,8\ \ \\ \end{matrix} \right.\ \]
\[\text{\ \ \ \ \ }\overline{0,2 < \sqrt{3} - \sqrt{2} < 0,4}\]
\[\boxed{\text{770.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[5x^{2} - 12x + c = 0,\ \ \]
\[x_{1} = 3x_{2}\]
\[x^{2} - \frac{12}{5}x + \frac{c}{5} = 0\]
\[\left\{ \begin{matrix} x_{1} + x_{2} = \frac{12}{5} \\ x_{1}x_{2} = \frac{c}{5}\text{\ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} 3x_{2} + x_{2} = \frac{12}{5} \\ 3x_{2} \cdot x_{2} = \frac{c}{5} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} 4x_{2} = \frac{12}{5}\ \ \ |\ :4 \\ 3x_{2}^{2} = \frac{c}{5}\ \ \ \ \ \ | \cdot 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} x_{2} = \frac{3}{5}\text{\ \ \ \ \ } \\ c = 15x_{2}^{2} \\ \end{matrix} \right.\ \]
\[c = 15 \cdot \left( \frac{3}{5} \right)^{2} = 15 \cdot \frac{9}{25} =\]
\[= 3 \cdot 9\ :5 = \frac{27}{5} = 5,4.\]
\[Ответ:c = 5,4.\ \]