\[\boxed{\text{624\ (624).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ \text{x\ }акций - приобрел\ \]
\[предприниматель,\ тогда\ \]
\[(x - 20)\ акций - он\ приобрел\ \]
\[бы\ в\ следующем\ году.\ Всего\ \]
\[стоимость\ акций\ составила\]
\[110\ 000\ рублей.\]
\[Составим\ уравнение:\]
\[\frac{110000}{x - 20} - \frac{110000}{x} = 50\]
\[110\ 000x - 110\ 000 \cdot (x - 20) =\]
\[= 50x(x - 20)\]
\[110000x - 110000x + 2\ 200\ 000 =\]
\[= 50x^{2} - 1000x\ \]
\[x^{2} - 20x - 44\ 000 = 0\]
\[D = 100 + 44\ 000 = 44\ 100\]
\[x_{1} = 10 + 210 = 220\ (акций) -\]
\[приобрел\ предприниматель.\]
\[Ответ:220\ акций.\ \ \ \]
\[\boxed{\text{624.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Если \(x_{1}\ и\ x_{2}\) – корни квадратного трехчлена ax²+bx+c, то:
\[ax^{2} + bx + c = a\left( a - x_{1} \right)\left( x - x_{2} \right).\]
Если квадратный трехчлен не имеет корней, то его нельзя разложить на множители.
Решение.
\[\textbf{а)}\ \frac{4x + 4}{3x^{2} + 2x - 1} =\]
\[= \frac{4 \cdot (x + 1)}{(x + 1)(3x - 1)} = \frac{4}{3x - 1}.\ \]
\[3x^{2} + 2x - 1 = 0\]
\[D_{1} = 1 + 3 = 4\]
\[x_{1} = \frac{- 1 + 2}{3} = \frac{1}{3};\ \ \]
\[\ x_{2} = \frac{- 1 - 2}{3} = - 1.\]
\[\Longrightarrow 3x^{2} + 2x - 1 =\]
\[= 3 \cdot (x + 1)\left( x - \frac{1}{3} \right) =\]
\[= (x + 1)(3x - 1).\]
\[\textbf{б)}\ \frac{2a^{2} - 5a - 3}{3a - 9} =\]
\[= \frac{(a - 3)(2a + 1)}{3 \cdot (a - 3)} = \frac{2a + 1}{3}.\]
\[2a^{2} - 5a - 3 = 0\]
\[D = 5^{2} + 4 \cdot 2 \cdot 3 = 25 + 24 =\]
\[= 49\]
\[a_{1} = \frac{5 + 7}{4} = 3;\ \ \]
\[\ a_{2} = \frac{5 - 7}{4} = - \frac{2}{4} = - \frac{1}{2}.\]
\[\Longrightarrow 2a^{2} - 5a - 3 =\]
\[= 2 \cdot (a - 3)\left( a + \frac{1}{2} \right) =\]
\[= (a - 3)(2a + 1).\]
\[\textbf{в)}\ \frac{16 - b^{2}}{b^{2} - b - 12} =\]
\[= \frac{(4 - b)(4 + b)}{(b - 4)(b + 3)} = - \frac{4 + b}{b + 3}.\]
\[b^{2} - b - 12 = 0\]
\[b_{1} + b_{2} = 1;\ \ \ b_{1} \cdot b_{2} = - 12\]
\[b_{1} = 4;\ \ \ b_{2} = - 3.\]
\[\Longrightarrow b^{2} - b - 12 = (b - 4)(b + 3).\]
\[\textbf{г)}\ \frac{2y^{2} + 7y + 3}{y^{2} - 9} =\]
\[= \frac{(y + 3)(2y + 1)}{(y - 3)(y + 3)} = \frac{2y + 1}{y - 3}.\]
\[2y^{2} + 7y + 3 = 0\]
\[D = 7^{2} - 4 \cdot 2 \cdot 3 = 49 - 24 =\]
\[= 25\]
\[y_{1} = \frac{- 7 - 5}{4} = - 3;\ \ \]
\[\ y_{2} = \frac{- 7 + 5}{4} = \frac{2}{4} = \frac{1}{2}.\]
\[\Longrightarrow 2y^{2} + 7y + 3 =\]
\[= 2 \cdot (y + 3)\left( y + \frac{1}{2} \right) =\]
\[= (y + 3)(2y + 1).\]
\[\textbf{д)}\ \frac{p^{2} - 11p + 10}{20 + 8p - p^{2}} =\]
\[= \frac{p^{2} - 11p + 10}{- \left( p^{2} - 8p - 20 \right)} =\]
\[= \frac{(p - 10)(p - 1)}{- (p - 10)(p + 2)} = \frac{1 - p}{p + 2}.\]
\[p^{2} - 11p + 10 = 0\]
\[p_{1} + p_{2} = 11;\ \ p_{1} \cdot p_{2} = 10\]
\[p_{1} = 10;\ \ p_{2} = 1.\]
\[\Longrightarrow p^{2} - 11p + 10 =\]
\[= (p - 10)(p - 1).\]
\[p^{2} - 8p - 20 = 0\]
\[D_{1} = 4^{2} + 20 = 36\]
\[p_{1} = 4 + 6 = 10;\]
\[p_{2} = 4 - 6 = - 2.\]
\[\Longrightarrow p^{2} - 8p - 20 =\]
\[= (p + 2)(p - 10).\]
\[\textbf{е)}\ \frac{3x^{2} + 16x - 12}{10 - 13x - 3x^{2}} =\]
\[= \frac{3x^{2} + 16x - 12}{- \left( 3x^{2} + 13x - 10 \right)} =\]
\[= \frac{(x + 6)(3x - 2)}{- (x + 5)(3x - 2)} = - \frac{x + 6}{x + 5}.\]
\[3x^{2} + 16x - 12 = 0\]
\[D_{1} = 8^{2} + 3 \cdot 12 = 100\]
\[x_{1} = \frac{- 8 + 10}{3} = \frac{2}{3};\ \ \]
\[\ x_{2} = \frac{- 8 - 10}{3} = - 6.\]
\[\Longrightarrow 3x^{2} + 16x - 12 =\]
\[= (x + 6)(3x - 2).\]
\[3x^{2} + 13x - 10 = 0\]
\[D = 13^{2} + 4 \cdot 3 \cdot 10 = 289\]
\[x_{1} = \frac{- 13 + 17}{6} = \frac{4}{6} = \frac{2}{3};\]
\[x_{2} = \frac{- 13 - 17}{6} = - 5.\]
\[\Longrightarrow 3x^{2} + 13x - 10 =\]
\[= (x + 5)(3x - 2).\]