\[\boxed{\text{611\ (611).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{6}{x} = x\]
\[\left\{ \begin{matrix} y = \frac{6}{x} \\ y = x \\ \end{matrix} \right.\ \]
\[y = \frac{6}{x}\]
\[x\] | \[1\] | \[2\] | \[3\] | \[6\] | \[- 1\] | \[- 2\] | \[- 3\] | \[- 6\] |
---|---|---|---|---|---|---|---|---|
\[y\] | \[6\] | \[3\] | \[2\] | \[1\] | \[- 6\] | \[- 3\] | \[- 2\] | \[- 1\] |
\[y = x\]
\[x\] | \[0\] | \[1\] | \[5\] |
---|---|---|---|
\[y\] | \[0\] | \[1\] | \[5\] |
\[x_{1} = - 2,5;\ \ x_{2} = 2,5\]
\(\ \)
\[Ответ:x = \left\{ - 2,5;2,5 \right\}.\]
\[\textbf{б)}\ \frac{6}{x} = - x + 6\]
\[\left\{ \begin{matrix} y = \frac{6}{x} \\ y = - x + 6 \\ \end{matrix} \right.\ \]
\[y = \frac{6}{x}\]
\[x\] | \[1\] | \[2\] | \[3\] | \[6\] | \[- 1\] | \[- 2\] | \[- 3\] | \[- 6\] |
---|---|---|---|---|---|---|---|---|
\[y\] | \[6\] | \[3\] | \[2\] | \[1\] | \[- 6\] | \[- 3\] | \[- 2\] | \[- 1\] |
\[y = - x + 6\]
\[x\] | \[0\] | \[1\] | \[5\] |
---|---|---|---|
\[y\] | \[0\] | \[1\] | \[5\] |
\[x_{1} \approx 1,4;\ \ x_{2} \approx 5\]
\(\ \)
\[Ответ:x = \left\{ 1,4;5 \right\}\text{.\ }\]
\[\boxed{\text{611.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Формулы квадрата суммы и квадрата разности:
\[a^{2} - 2ab + b^{2} = (a - b)^{2};\]
\[a^{2} + 2ab + b^{2} = (a + b)^{2}.\]
Решение.
\[2x^{2} - 4x + 6 =\]
\[= 2 \cdot \left( x^{2} - 2x + 3 \right) =\]
\[= 2 \cdot \left( x^{2} - 2x + 1 + 2 \right) =\]
\[= 2 \cdot \left( x^{2} - 2x + 1 \right) + 4 =\]
\[= 2 \cdot (x - 1)^{2} + 4;\]
\[минимальное\ значение\ 4\ при\ \]
\[x = 1,\ так\ как:\ \]
\[2 \cdot (x - 1)^{2} = 0\ \ \]
\[x = 1.\]