\[\boxed{\text{610\ (610).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 1 + \frac{1}{3 + \frac{1}{2 + \frac{1}{5 - x^{2}}}} = 1\frac{7}{24}\]
\[1 + \frac{1}{3 + \frac{1}{\frac{10 - 2x^{2} + 1}{5 - x^{2}}}} = \frac{31}{24}\]
\[1 + \frac{1}{3 + \frac{5 - x^{2}}{11 - 2x^{2}}} = \frac{31}{24}\]
\[1 + \frac{1}{\frac{33 - 6x^{2} + 5 - x^{2}}{11 - 2x^{2}}} = \frac{31}{24}\]
\[1 \cdot \left( 38 - 7x^{2} \right) + \frac{11 - 2x^{2}}{- 7x^{2} + 38} =\]
\[= \frac{31}{24}\]
\[\frac{- 7x^{2} + 38 + 11 - 2x^{2}}{- 7x^{2} + 38} = \frac{31}{24}\]
\[24 \cdot \left( - 9x^{2} + 49 \right) =\]
\[= 31 \cdot \left( - 7x^{2} + 38 \right)\]
\[- 216x^{2} + 1176 =\]
\[= - 217x^{2} + 1178\]
\[x^{2} = 2\]
\[x = \pm \sqrt{2}\]
\[Ответ:x = \pm \sqrt{2}.\]
\[\textbf{б)}\ 1 - \frac{1}{2 + \frac{1}{1 + \frac{1}{10 - x^{2}}}} = \frac{3}{5}\]
\[1 - \frac{1}{2 + \frac{1}{\frac{10 - x^{2} + 1}{10 - x^{2}}}} = \frac{3}{5}\]
\[1 - \frac{1}{2 + \frac{10 - x^{2}}{11 - x^{2}}} = \frac{3}{5}\]
\[1 - \frac{1}{\frac{22 - 2x^{2} + 10 - x^{2}}{11 - x^{2}}} = \frac{3}{5}\]
\[1 - \frac{11 - x^{2}}{32 - 3x^{2}} = \frac{3}{5}\]
\[\frac{32 - 3x^{2} - 11 + x^{2}}{32 - 3x^{2}} = \frac{3}{5}\]
\[5 \cdot \left( 21 - 2x^{2} \right) = 3 \cdot \left( 32 - 3x^{2} \right)\]
\[105 - 10x^{2} = 96 - 9x^{2}\]
\[x^{2} = 9\]
\[x = \pm 3\ \]
\[Ответ:x = \pm 3.\]
\[\boxed{\text{610.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Формулы квадрата суммы и квадрата разности:
\[a^{2} - 2ab + b^{2} = (a - b)^{2};\]
\[a^{2} + 2ab + b^{2} = (a + b)^{2}.\]
Решение.
\[x^{2} - 6x + 11 =\]
\[= \left( x^{2} - 6x + 9 \right) + 2 =\]
\[= (x - 3)^{2} + 2 > 0;\]
\[- x^{2} + 6x - 11 =\]
\[= - \left( x^{2} - 6x + 11 \right) =\]
\[= - (x - 3)^{2} - 2 < 0.\]