\[\boxed{\text{605\ (605).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x - 5 \neq 0,\ \ x \neq 5\]
\[x + 5 \neq 0,\ \ x \neq - 5\ \]
\[- 10x = - 60\]
\[x = 6\]
\[Ответ:x = 6.\]
\[\textbf{б)}\frac{1}{2 - x} - 1 = \frac{1}{x - 2} - \frac{6 - x}{3x^{2} - 12}\]
\[2 - x \neq 0,\ \ x \neq 2\]
\[\frac{- 1}{x - 2} - 1 = \frac{1}{x - 2} - \frac{6 - x}{3 \cdot \left( x^{2} - 4 \right)}\]
\[\frac{- 1 - x + 2}{x - 2} =\]
\[= \frac{1}{x - 2} - \frac{6 - x}{3 \cdot \left( x^{2} - 4 \right)}\]
\[3 \cdot (1 - x)(x + 2) =\]
\[= 3 \cdot (x + 2) - (6 - x)\]
\[3x + 6 - 3x^{2} - 6x =\]
\[= 3x + 6 - 6 + x\]
\[- 3x^{2} - 7x + 6 = 0\ \ \ \ \ | \cdot ( - 1)\]
\[3x^{2} + 7x - 6 = 0\]
\[D = 49 + 72 = 121\]
\[x_{1,2} = \frac{- 7 \pm 11}{6}\]
\[x_{1} = - 3;\ \ x_{2} = \frac{2}{3}\]
\[Ответ:x = \left\{ - 3;\frac{2}{3} \right\}.\]
\[\textbf{в)}\frac{7y - 3}{y - y^{2}} = \frac{1}{y - 1} - \frac{5}{y(y - 1)}\]
\[\frac{7y - 3}{y(1 - y)} = \frac{1}{y - 1} - \frac{5}{y(y - 1)}\]
\[\frac{3 - 7y}{y(y - 1)} = \frac{1}{y - 1} - \frac{5}{y(y - 1)}\]
\[3 - 7y = y - 5\]
\[8y = 8\]
\[y = 1 - не\ подходит,\ так\ как\ \]
\[по\ ОДЗ\ y \neq 1.\]
\[Ответ:корней\ нет.\]
\[\textbf{г)}\frac{3}{y - 2} + \frac{7}{y + 2} = \frac{10}{y}\]
\[y \neq 0\]
\[y - 2 \neq 0,\ \ y \neq 2\]
\[y + 2 \neq 0,\ \ y \neq - 2\]
\[\frac{3y + 6 + 7y - 14}{y^{2} - 4} = \frac{10}{y}\]
\[y(10y - 8) = 10\left( y^{2} - 4 \right)\]
\[10y^{2} - 8y = 10y^{2} - 40\]
\[- 8y = - 40\]
\[y = 5\]
\[Ответ:y = 5.\]
\[\textbf{д)}\frac{x + 3}{x - 3} + \frac{x - 3}{x + 3} = 3\frac{1}{3}\]
\[x - 3 \neq 0,\ \ x \neq 3\]
\[x + 3 \neq 0,\ \ x \neq - 3\]
\[3 \cdot \left( x^{2} + 6x + 9 + x^{2} - 6x + 9 \right) =\]
\[= 10 \cdot \left( x^{2} - 9 \right)\]
\[6x^{2} + 54 = 10x^{2} - 90\]
\[4x^{2} = 144\]
\[x^{2} = 36\]
\[x = \pm 6\]
\[Ответ:x = \left\{ - 6;6 \right\}.\]
\[\textbf{е)}\frac{5x + 7}{x - 2} - \frac{2x + 21}{x + 2} = 8\frac{2}{3}\]
\[x - 2 \neq 0,\ \ x \neq 2\]
\[x + 2 \neq 0,\ \ x \neq - 2\]
\[9x^{2} + 168 = 26x^{2} - 104\]
\[17x^{2} = 272\]
\[x^{2} = 16\]
\[x = \pm 4\]
\[Ответ:x = \left\{ - 4;4 \right\}\text{.\ }\]
\[\boxed{\text{605.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Квадратным трехчленом называется многочлен вида ax²+bx+c, где x – переменная, a, b и c – некоторые числа, причем a не равно 0.
Чтобы найти корни квадратного трехчлена, надо решить квадратное уравнение (приравнять к нулю).
Дискриминант вычисляется по формуле:
\[D = b^{2} - 4a\text{c.}\]
Количество корней определяем по знаку дискриминанта:
D>0 – два корня;
D=0 – один корень;
D<0 – нет корней.
Решение.
\[\textbf{а)} - 4x^{2} - 4x + 3 = 0\]
\[4x^{2} + 4x - 3 = 0\]
\[D_{1} = 2^{2} + 4 \cdot 3 = 4 + 12 =\]
\[= 16 > 0.\]
\[Квадратный\ трехчлен\ имеет\ \]
\[два\ корня.\]
\[\textbf{б)}\ 4x² - 4x + 3 = 0\]
\[D_{1} = 2^{2} - 3 \cdot 4 = 4 - 12 =\]
\[= - 8 < 0.\]
\[Квадратный\ трехчлен\ \]
\[не\ имеет\ корней.\]
\[\textbf{в)}\ 9x² - 12x + 4 = 0\]
\[D_{1} = 6^{2} - 4 \cdot 9 = 36 - 36 = 0.\]
\[Квадратный\ трехчлен\ \]
\[имеет\ один\ корень.\]
\[\textbf{г)}\ 9x² - 12x - 4 = 0\]
\[D_{1} = 6^{2} + 4 \cdot 9 = 36 + 36 =\]
\[= 72 > 0.\]
\[Квадратный\ трехчлен\ имеет\ \]
\[два\ корня.\]