\[\boxed{\text{594\ (594).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 3x^{2} + 113x - 7 = 0\ \ \ \ \ \ |\ :3\] \[x^{2} + \frac{113x}{3} - \frac{7}{3} = 0\] \[\left\{ \begin{matrix} x_{1} + x_{2} = - \frac{113}{3} \\ x_{1}x_{2} = - \frac{7}{3}\text{\ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} x_{1} < 0 \\ x_{2} > 0 \\ \end{matrix} \right.\ \] \[Корни\ уравнения\ разного\ \] \[знака.\] \[Что\ и\ требовалось\ доказать.\] |
\[\ \] |
---|
\[\textbf{б)}\ 5x^{2} - 291x - 16 = 0\ \ \ \ \ \ \ |\ :5\]
\[x^{2} - \frac{291x}{5} - \frac{16}{5} = 0\]
\[\left\{ \begin{matrix} x_{1} + x_{2} = \frac{291}{5} \\ x_{1}x_{2} = - \frac{16}{5}\text{\ \ \ \ \ \ } \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x_{1} > 0 \\ x_{2} < 0 \\ \end{matrix} \right.\ \]
\[Корни\ уравнения\ разного\ \]
\[знака.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\text{594.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Раскроем скобки, используя формулы:
\[(a + b)^{2} = a^{2} + 2ab + b^{2};\]
\[(a - b)^{2} = a^{2} - 2ab + b^{2}.\]
Перенесем все слагаемые в левую часть уравнения, меняя знаки на противоположные, и приравняем к нулю.
Решение.