\[\boxed{\text{593\ (593).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x^{2} + 7x - 1 = 0\] \[D = 49 + 4 = 53 > 0\] \[2\ корня.\] \[x_{1} + x_{2} = - 7 < 0;\] \[x_{1} \cdot x_{2} = - 1 < 0\] \[Корни\ уравнения\ будут\ \] \[разного\ знака:один\ \] \[положительный,\ другой\] \[отрицательный.\] |
\[\textbf{б)}\ x^{2} - 7x + 1 = 0\] \[D = 49 - 4 = 45 > 0\] \[2\ корня.\] \[x_{1} + x_{2} = 7 > 0;\] \[x_{1} \cdot x_{2} = 1 > 0\] \[x_{1} > 0;\ \ x_{2} > 0\] \[Оба\ корня\ положительные.\] |
---|---|
\[\textbf{в)}\ 5x^{2} + 17x + 16 = 0\] \[D = 289 - 320 < 0\] \[корней\ нет\] |
\[\textbf{г)}\ 19x^{2} - 23x + 5 = 0\] \[D = 529 - 380 > 0\] \[2\ корня.\] \[x_{1} + x_{2} = \frac{23}{19} > 0;\ \ \] \[x_{1} \cdot x_{2} = \frac{5}{19} > 0\] \[Оба\ корня\ положительные.\] |
\[\textbf{д)}\ 2x^{2} + 5\sqrt{3}x + 11 = 0\] \[D = 25 \cdot 3 - 88 = - 13 < 0\] \[корней\ нет.\] |
\[\textbf{е)}\ 11x^{2} - 9x + 7 - 5\sqrt{2} = 0\] \[D = 81 - 44 \cdot \left( 7 - 5\sqrt{2} \right) =\] \[= 81 - 308 + 220\sqrt{2} \approx\] \[\approx - 227 + 311 > 0\] \[2\ корня.\] \[x_{1} + x_{2} = \frac{9}{11} > 0;\ \ \] \[x_{1} \cdot x_{2} = \frac{7 - 5\sqrt{2}}{11} < 0\] \[x_{1} > 0;\ \ x_{2} < 0.\] |
\[Теорема\ определения\ знаков:\ \] \[если\] \[x_{1} + x_{2} > 0\ и\ \] \[x_{1}x_{2} > 0 \Longrightarrow \ x_{1} > 0,\ x_{2} > 0\] \[x_{1} + x_{2} > 0\ и\ \] \[x_{1}x_{2} < 0 \Longrightarrow \ \ x_{1} > 0,\ x_{2} < 0\] \[x_{1} + x_{2} < 0\ и\ \] \[x_{1}x_{2} < 0 \Longrightarrow \ \ x_{1} < 0,\ x_{2} > 0\] \[x_{1} + x_{2} < 0\ и\ \] \[x_{1}x_{2} > 0 \Longrightarrow \ \ x_{1} < 0,\ x_{2} < 0\] |
\[\boxed{\text{593.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Формула для преобразования:
\[(a + b)^{2} = a^{2} + 2ab + b^{2}.\]
Решение.
\[x^{2} + 5x + m = 0\]
\[x_{1} + x_{2} = - 5;\ \ \ \ \ \ x_{1} \cdot x_{2} = m\]
\[\left( x_{1}^{2} + x_{2}^{2} \right) + 2x_{1}x_{2} = 25\]
\[35 + 2m = 25\]
\[2m = 25 - 35\]
\[2m = - 10\]
\[m = - 5\]
\[Ответ:при\ m = - 5.\]
\[\left\{ \begin{matrix} - 5 \cdot \left( \left( x_{1} + x_{2} \right)^{2} - 3x_{1}x_{2} \right) = 40 \\ x_{1} + x_{2} = - 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[- 5 \cdot \left( \left( x_{1} + x_{2} \right)^{2} - 3x_{1}x_{2} \right) = 40\]
\[- 5 \cdot \left( ( - 5)^{2} - 3m \right) = 40\]
\[- 5 \cdot (25 - 3m) = 40\]
\[25 - 3m = - 8\]
\[3m = 33\]
\[m = 11\]
\[Ответ:при\ m = 11.\ \]