\[\boxed{\text{595\ (595).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[x^{2} + 5x + m = 0\]
\[x_{1} + x_{2} = - 5;\ \ \ \ \ \ \]
\[x_{1} \cdot x_{2} = m\]
\[\left( x_{1}^{2} + x_{2}^{2} \right) + 2x_{1}x_{2} = 25\]
\[35 + 2m = 25\]
\[2m = 25 - 35\]
\[2m = - 10\]
\[m = - 5\]
\[Ответ:при\ m = - 5.\]
\[\left\{ \begin{matrix} - 5 \cdot \left( \left( x_{1} + x_{2} \right)^{2} - 3x_{1}x_{2} \right) = 40 \\ x_{1} + x_{2} = - 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[- 5 \cdot \left( \left( x_{1} + x_{2} \right)^{2} - 3x_{1}x_{2} \right) = 40\]
\[- 5 \cdot \left( ( - 5)^{2} - 3m \right) = 40\]
\[- 5 \cdot (25 - 3m) = 40\]
\[25 - 3m = - 8\]
\[3m = 33\]
\[m = 11\]
\[Ответ:при\ m = 11.\ \]
\[\boxed{\text{595.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[І\ способ.\]
\[\frac{a}{b} = \frac{8x}{15x}\]
\[По\ теореме\ Пифагора:\]
\[(8x)^{2} + (15x)^{2} = {6,8}^{2}\]
\[64x^{2} + 225x^{2} = 46,24\]
\[289x^{2} = 46,24\]
\[x^{2} = \frac{4624}{100}\ :289 = \frac{4624}{28900}\]
\[x = \sqrt{\frac{4624}{28900}} = \pm \frac{68}{170} = \pm \frac{4}{10}\]
\[x = 0,4,\ \ так\ как - 0,4 \notin N\]
\[a = 8 \cdot 0,4 = 3,2\ м\]
\[b = 15 \cdot 0,4 = 6\ м\]
\[S = \frac{\text{ab}}{2} = \frac{3,2 \cdot 6}{2} = 9,6\ \left( м^{2} \right).\]
\[ІІ\ способ.\]
\[Пусть\ 8x\ м - первый\ катет,\ \]
\[тогда\ 15x\ м - второй\ катет.\]
\[Составим\ уравнение,\]
\[\ используя\ теорему\ Пифагора:\]
\[(8x)^{2} + (15x)^{2} = {6,8}^{2}\]
\[64x^{2} + 225x^{2} = 46,24\]
\[289x^{2} = 46,24\]
\[x^{2} = \frac{46,24}{289} = \frac{4624}{28900}\]
\[x = \frac{68}{170} = 0,4\]
\[8x = 8 \cdot 0,4 = 3,2\ (м) -\]
\[первый\ катет.\]
\[15x = 15 \cdot 0,4 = 6\ (м) -\]
\[второй\ катет.\]
\[S = \frac{3,2 \cdot 6}{2} = 9,6\ м^{2}.\]
\[Ответ:9,6\ м^{2}\ \]