\[\boxed{\text{554\ (554).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \]
\[\textbf{а)}\ x^{2} - 5x + 6 = 0\] \[D = 25 - 24 = 1\] \[x_{1,2} = \frac{5 \pm \sqrt{1}}{2} = \frac{5 \pm 1}{2}\] \[x_{1} = \frac{6}{2} = 3;\ \ x_{2} = \frac{4}{2} = 2\] |
\[6x^{2} - 5x + 1 = 0\] \[D = 25 - 24 = 1\] \[x_{1,2} = \frac{5 \pm \sqrt{1}}{2 \cdot 6} = \frac{5 \pm 1}{12}\] \[x_{1} = \frac{4}{12} = \frac{1}{3};\ \ x_{2} = \frac{6}{12} = \frac{1}{2}\] |
---|---|
\[Корни\ уравнений - взаимно\ \] \[обратные\ числа.\] |
|
\[\textbf{б)}\ 2x^{2} - 13x + 6 = 0\] \[D = 169 - 48 = 121\] \[x_{1,2} = \frac{13 \pm \sqrt{121}}{2 \cdot 2} = \frac{13 \pm 11}{4}\] \[x_{1} = \frac{2}{4} = \frac{1}{2};\ \ x_{2} = \frac{24}{4} = 6\] |
\[6x^{2} - 13x + 2 = 0\] \[D = 169 - 48 = 121\] \[x_{1,2} = \frac{13 \pm \sqrt{121}}{2 \cdot 6} = \frac{13 \pm 11}{12}\] \[x_{1} = \frac{2}{12} = \frac{1}{6};\ \ x_{2} = \frac{24}{12} = 2\] |
\[Корни\ уравнений - взаимно\ \] \[обратные\ числа.\] \[2)\ \] \[Результаты\ двух\ сравниваемых\ \] \[уравнений\ являются\ \] \[обратными\ числами.\] \[3)\ \] \[ax^{2} + bx + c = 0\] \[D = b^{2} - 4ac\] \[x_{1} = \frac{- b \pm \sqrt{b^{2} - 4ac}}{2a} =\] \[= \frac{- b \pm \sqrt{D}}{2a}.\] \[cx^{2} + bx + a = 0\] \[D = b^{2} - 4ac\] \[x_{2} = \frac{- b \pm \sqrt{b^{2} - 4ac}}{2c} =\] \[= \frac{- b \pm \sqrt{D}}{2c}.\] \[x_{1} \cdot x_{2} = \frac{- b - \sqrt{D}}{2a} \cdot \frac{- b + \sqrt{D}}{2c} =\] \[= \frac{\left( - b - \sqrt{D} \right)\left( - b + \sqrt{D} \right)}{2a \cdot 2c} =\] \[= \frac{b^{2} - D}{4ac} = \frac{b^{2} - \left( b^{2} - 4ac \right)}{4ac} =\] \[= \frac{b^{2} - b^{2} + 4ac}{4ac} = \frac{4ac}{4ac} = 1.\] \[Следовательно,\ корни\ \] \[уравнений\ ax^{2} + bx + c = 0\ и\ \] \[cx^{2} + bx + a = 0\ являются\ \] \[парами\ взаимно\ обратных\ \] \[чисел.\] \[Что\ и\ требовалось\ доказать.\] |
\[\boxed{\text{554.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Приведем числитель к общему знаменателю и преобразуем числитель полученной дроби по формуле:
\[(a - b)^{2} = a^{2} - 2ab + b^{2}.\]
Решение.
\[\frac{a - \frac{2a - 1}{a}}{\frac{1 - a}{3a}} =\]
\[= \frac{(a - 1)^{2}}{a} \cdot \frac{3a}{1 - a} =\]
\[= \frac{(1 - a)^{2} \cdot 3}{1 - a} = 3 \cdot (1 - a) =\]
\[= 3 - 3a\]
\[при\ a = - 1,5:\ \ \]
\[3 - 3 \cdot ( - 1,5) = 3 + 4,5 = 7,5.\ \]