\[\boxed{\text{55\ (55).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{2x - 3y}{4xy} + \frac{11y - 2x}{4xy} =\]
\[= \frac{2x - 3y + 11y - 2x}{4xy} =\]
\[\textbf{б)}\ \frac{5a + b^{5}}{8b} - \frac{5a - 7b^{5}}{8b} =\]
\[= \frac{5a + b^{5} - 5a + 7b^{5}}{8b} =\]
\[\textbf{в)}\ \frac{a - 2}{8a} + \frac{2a + 5}{8a} - \frac{3 - a}{8a} =\]
\[= \frac{1}{2}\]
\[\textbf{г)}\ \frac{11a - 2b}{4a} + \frac{2a - 3b}{4a} - \frac{a - b}{4a} =\]
\[= \frac{11a - 2b + 2a - 3b - a + b}{4a} =\]
\[= \frac{12a - 4b}{4a} =\]
\[\boxed{\text{55.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{x}{3} + \frac{y}{3} = \frac{x + y}{3}\]
\[\textbf{б)}\ \frac{5b^{2}}{a} - \frac{13b^{2}}{a} = \frac{5b^{2} - 13b^{2}}{a} =\]
\[= \frac{- 8b^{2}}{a}\]
\[\textbf{в)}\ \frac{x + y}{9} - \frac{x}{9} = \frac{x + y - x}{9} = \frac{y}{9}\]
\[\textbf{г)}\ \frac{2c - x}{b} + \frac{x}{b} = \frac{2c - x + x}{b} = \frac{2c}{b}\]