\[\boxed{\text{56\ (56).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{17 - 12x}{x} + \frac{10 - x}{x} =\]
\[= \frac{17 - 12x + 10 - x}{x} =\]
\[= \frac{27 - 13x}{x}\]
\[\textbf{б)}\ \frac{12p - 1}{3p^{2}} - \frac{1 - 3p}{3p^{2}} =\]
\[= \frac{12p - 1 - 1 + 3p}{3p^{2}} = \frac{15p - 2}{3p^{2}}\]
\[\textbf{в)}\ \frac{6y - 3}{5y} - \frac{y + 2}{5y} =\]
\[= \frac{6y - 3 - y - 2}{5y} = \frac{5y - 5}{5y} =\]
\[= \frac{5 \cdot (y - 1)}{5y} = \frac{y - 1}{y}\]
\[\textbf{г)}\ \frac{3p - q}{5p} - \frac{2p + 6q}{5p} + \frac{p - 4q}{5p} =\]
\[= \frac{3p - q - 2p - 6q + p - 4q}{5p} =\]
\[= \frac{2p - 11q}{5p}\]
\[\textbf{д)}\ \frac{5c - 2d}{4c} - \frac{3d}{4c} + \frac{d - 5c}{4c} =\]
\[= \frac{5c - 2d - 3d + d - 5c}{4c} =\]
\[\textbf{е)}\ \frac{2a}{b} - \frac{1 - 6a}{b} + \frac{13 - 8a}{b} =\]
\[= \frac{2a - 1 + 6a + 13 - 8a}{b} = \frac{12}{b}\]
\[\boxed{\text{56.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{m}{2p} - \frac{m - p}{2p} = \frac{m - m + p}{2p} =\]
\[\textbf{б)}\ \frac{a + b}{6} - \frac{a - 2b}{6} =\]
\[= \frac{a + b - a + 2b}{6} = \frac{b + 2b}{6} =\]
\[\textbf{в)}\ \frac{7y - 13}{10y} - \frac{2y + 3}{10y} =\]
\[= \frac{7y - 13 - 2y - 3}{10y} = \frac{5y - 16}{10y}\]
\[\textbf{г)}\ \frac{8c + 25}{6c} + \frac{5 - 2c}{6c} =\]
\[= \frac{8c + 25 + 5 - 2c}{6c} = \frac{6c + 30}{6c} =\]