\[\boxed{\text{501\ (501).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[при\ x = 3 + \sqrt{5};\ \ y = 3 - \sqrt{5}:\]
\[\frac{x^{2} - 3xy + y^{2}}{x + y + 2} =\]
\[= \frac{9 + 5 - 27 + 15 + 9 + 5}{8} =\]
\[= \frac{16}{8} = 2.\ \]
\[\boxed{\text{501.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
При всех допустимых значениях a верно равенство:
\[\left( \sqrt{a} \right)^{2} = a.\]
Решение.
\[\textbf{а)}\ \frac{x - \sqrt{\text{xy}} + y}{\sqrt{x} - \sqrt{y}} =\]
\[= \frac{\left( x - \sqrt{\text{xy}} + y \right) \cdot \left( \sqrt{x} + \sqrt{y} \right)}{\left( \sqrt{x} - \sqrt{y} \right) \cdot \left( \sqrt{x} + \sqrt{y} \right)} =\]
\[= \frac{\sqrt{x^{3}} + \sqrt{y^{3}}}{x - y} = \frac{x\sqrt{x} + y\sqrt{y}}{x - y}\ \]
\[\textbf{б)}\ \frac{9 + 3\sqrt{a} + a}{3 + \sqrt{a}} =\]
\[= \frac{\left( 9 + 3\sqrt{a} + a \right) \cdot \left( 3 - \sqrt{a} \right)}{\left( 3 + \sqrt{a} \right) \cdot \left( 3 - \sqrt{a} \right)} =\]
\[= \frac{3^{3} - \left( \sqrt{a} \right)^{3}}{9 - a} = \frac{27 - a\sqrt{a}}{9 - a}\]
\[\textbf{в)}\ \frac{1 - 2\sqrt{x} + 4x}{1 - 2\sqrt{x}} =\]
\[= \frac{\left( 1 - 2\sqrt{x} + 4x \right) \cdot \left( 1 + 2\sqrt{x} \right)}{\left( 1 - 2\sqrt{x} \right) \cdot \left( 1 + 2\sqrt{x} \right)} =\]
\[= \frac{1 + \left( 2\sqrt{x} \right)^{3}}{1 - 4x} = \frac{1 + 8x\sqrt{x}}{1 - 4x}\]
\[\textbf{г)}\ \frac{a^{2}b + 2a\sqrt{b} + 4}{a\sqrt{b} + 2} =\]
\[= \frac{\left( a^{2}b + 2a\sqrt{b} + 4 \right) \cdot \left( a\sqrt{b} - 2 \right)}{\left( a\sqrt{b} + 2 \right) \cdot \left( a\sqrt{b} - 2 \right)} =\]
\[= \frac{\left( a\sqrt{b} \right)^{3} - 2^{3}}{a^{2}b - 4} =\]
\[= \frac{a^{3}b\sqrt{b} - 8}{a^{2}b - 4}\ \]