\[\boxed{\text{482\ (482).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \sqrt{4^{3}} = \sqrt{2^{6}} = 2^{3} = 8\]
\[\textbf{б)}\ \sqrt{9^{5}} = \sqrt{3^{10}} = 3^{5} = 243\]
\[\textbf{в)}\ \sqrt{16^{5}} = \sqrt{4^{10}} = 4^{5} = 1024\]
\[\textbf{г)}\ \sqrt{25^{3}} = \sqrt{5^{6}} = 5^{3} = 125\]
\[\textbf{д)}\ \sqrt{8 \cdot 162} = \sqrt{4 \cdot 2 \cdot 81 \cdot 2} =\]
\[= 2 \cdot 2 \cdot 9 = 36\]
\[\textbf{е)}\ \sqrt{86 \cdot 486} = \sqrt{16 \cdot 6 \cdot 6 \cdot 81} =\]
\[= 4 \cdot 6 \cdot 9 = 216\]
\[\textbf{ж)}\ \sqrt{750 \cdot 270} =\]
\[= \sqrt{25 \cdot 3 \cdot 10 \cdot 9 \cdot 3 \cdot 10} =\]
\[= 5 \cdot 3 \cdot 10 \cdot 3 = 450\]
\[\textbf{з)}\ \sqrt{194 \cdot 776} = \sqrt{2 \cdot 97 \cdot 97 \cdot 8} =\]
\[= 4 \cdot 97 = 388\]
\[\boxed{\text{482.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
При любом значении x верно равенство:
\[\sqrt{x^{2}} = |x|.\]
Модулем числа a называется само число a, если a>=0, или (-a), если a<0:
\[|a| = a;при\ a \geq 0;\]
\[|a| = - a;при\ a < 0.\]
Модуль числа всегда или положительное число, или равен 0.
Решение.
\[\textbf{а)}\ \sqrt{( - a)^{2}} = \sqrt{a^{2}} = |a|\]
\[\textbf{б)}\ \sqrt{( - a)^{2}( - b)^{4}} = \sqrt{a^{2} \cdot \left( b^{2} \right)^{2}} =\]
\[= \sqrt{a^{2}} \cdot \sqrt{\left( b^{2} \right)^{2}} = |a| \cdot \left| b^{2} \right|\]
\[b^{2} \geq 0\ при\ любом\ b:\]
\[|a| \cdot \left| b^{2} \right| = |a| \cdot b^{2}\text{.\ }\]