\[\boxed{\text{466\ (466).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\sqrt{1 + \sqrt{2 + \sqrt{x}}} = 2\]
\[\left( \sqrt{1 + \sqrt{2 + \sqrt{x}}} \right)^{2} = 2^{2}\]
\[1 + \sqrt{2 + \sqrt{x}} = 4\]
\[\sqrt{2 + \sqrt{x}} = 4 - 1\]
\[\sqrt{2 + \sqrt{x}} = 3\]
\[\left( \sqrt{2 + \sqrt{x}} \right)^{2} = 3^{2}\]
\[2 + \sqrt{x} = 9\]
\[\sqrt{x} = 9 - 2\]
\[\sqrt{x} = 7\]
\[\left( \sqrt{x} \right)^{2} = 7^{2}\]
\[x = 49.\]
\[Ответ:x = 49.\]
\[\boxed{\text{466.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[Формула\ для\ нахождения\ \]
\[расстояния\ между\ двумя\ \]
\[точками\]
\[плоскости\ A\left( x_{1};y_{1} \right)\ и\ B\left( x_{2};y_{2} \right).\]
\[d = \sqrt{\left( x_{1} - x_{2} \right)^{2} + \left( y_{1} - y_{2} \right)^{2}}.\]
\[Подставим\ координаты.\]
\[\text{A\ }( - 3,5;4,3);\ \ B\ (7,8;0,4):\]
\[d =\]
\[= \sqrt{( - 3,5 - 7,8)^{2} + (4,3 - 0,4)^{2}} =\]
\[= \sqrt{( - 11,3)^{2} + (3,9)^{2}} =\]
\[= \sqrt{127,69 + 15,21} = \sqrt{142,9} \approx\]
\[\approx 11,954.\]
\[Ответ:примерно\ 11,954.\]