\[\boxed{\text{464\ (464).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x = 2:\ \ \ \ \ \ \]
\[\sqrt{5x - 10} = \sqrt{5 \cdot 2 - 10} =\]
\[= \sqrt{10 - 10} = \sqrt{0} = 0\]
\[x = 2,2:\ \ \ \]
\[\sqrt{5x - 10} = \sqrt{5 \cdot 2,2 - 10} =\]
\[= \sqrt{11 - 10} = \sqrt{1} = 1\]
\[x = 5,2:\ \ \ \]
\[\sqrt{5x - 10} = \sqrt{5 \cdot 5,2 - 10} =\]
\[= \sqrt{26 - 10} = \sqrt{16} = 4\]
\[x = 22:\ \ \ \ \]
\[\sqrt{5x - 10} = \sqrt{5 \cdot 22 - 10} =\]
\[= \sqrt{110 - 10} = \sqrt{100} = 10\]
\[\textbf{б)}\ y = 1:\ \ \]
\[\sqrt{6 - 2y} = \sqrt{6 - 2 \cdot 1} =\]
\[= \sqrt{6 - 2} = \sqrt{4} = 2\]
\[y = - 1,5:\ \ \]
\[\sqrt{6 - 2y} = \sqrt{6 - 2 \cdot ( - 1,5)} =\]
\[= \sqrt{6 + 3} = \sqrt{9} = 3\]
\[y = - 15:\ \ \]
\[\sqrt{6 - 2y} = \sqrt{6 - 2 \cdot ( - 15)} =\]
\[= \sqrt{6 + 30} = \sqrt{36} = 6\]
\[y = - 37,5:\ \ \]
\[\sqrt{6 - 2y} = \sqrt{6 - 2 \cdot ( - 37,5)} =\]
\[= \sqrt{6 + 75} = \sqrt{81} = 9\]
\[\textbf{в)}\ x = 0:\ \ \ \]
\[\frac{3 + \sqrt{x}}{3 - \sqrt{x}} = \frac{3 + \sqrt{0}}{3 - \sqrt{0}} = \frac{3}{3} = 1\]
\[x = 1:\ \ \ \]
\[\frac{3 + \sqrt{x}}{3 - \sqrt{x}} = \frac{3 + \sqrt{1}}{3 - \sqrt{1}} = \frac{4}{2} = 2\]
\[x = 16:\ \ \ \]
\[\frac{3 + \sqrt{x}}{3 - \sqrt{x}} = \frac{3 + \sqrt{16}}{3 - \sqrt{16}} = \frac{3 + 4}{3 - 4} =\]
\[= - \frac{7}{1} = - 7\]
\[x = 0,25:\ \ \ \]
\[\frac{3 + \sqrt{x}}{3 - \sqrt{x}} = \frac{3 + \sqrt{0,25}}{3 - \sqrt{0,25}} = \frac{3 + 0,5}{3 - 0,5} =\]
\[= \frac{3,5}{2,5} = \frac{7}{5} = 1,4\]
\[\textbf{г)}\ a = 0,\ \ \ b = 0:\ \ \ \]
\[\sqrt{2a - b} = \sqrt{2 \cdot 0 - 0} = \sqrt{0} = 0\]
\[a = 4,\ \ \ b = 7:\ \ \ \ \ \ \ \]
\[\ \sqrt{2a - b} = \sqrt{2 \cdot 4 - 7} =\]
\[= \sqrt{8 - 7} = \sqrt{1} = 1\ \ \ \ \ \]
\[\boxed{\text{464.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{4}{\sqrt{x}}\]
\[Выражение\ имеет\ смысл\ \]
\[при\ \ x > 0.\]
\[\textbf{б)}\ \frac{1}{\sqrt{x} + 2}\text{\ \ }\]
\[Выражение\ имеет\ смысл\ \]
\[при\ \ x \geq 0.\]
\[\textbf{в)}\ \frac{5}{\sqrt{x} - 1}\]
\[x > 0;\]
\[\sqrt{x} - 1 \neq 0\]
\[\sqrt{x} \neq 1\]
\[x \neq 1.\]
\[Выражение\ имеет\ смысл\ \]
\[при\ \ x \geq 0;\ \ x \neq 1.\]