\[\boxed{\text{452\ (452).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ b \geq 1:\]
\[\ \sqrt{\frac{b + 1}{2} - {\sqrt{b}}^{\backslash 2}} - \sqrt{\frac{b + 1}{2} + {\sqrt{b}}^{\backslash 2}} =\]
\[= \sqrt{\frac{b + 1 - 2\sqrt{b}}{2}} - \sqrt{\frac{b + 1 + 2\sqrt{b}}{2}} =\]
\[= \sqrt{\frac{\left( \sqrt{b} - 1 \right)^{2}}{2}} - \sqrt{\frac{\left( \sqrt{b} + 1 \right)^{2}}{2}} =\]
\[= \frac{\sqrt{b} - 1}{\sqrt{2}} - \frac{\sqrt{b} + 1}{\sqrt{2}} =\]
\[= \frac{\sqrt{b} - 1 - \sqrt{b} - 1}{\sqrt{2}} =\]
\[= - \frac{2}{\sqrt{2}} = \frac{- 2\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = - \frac{2\sqrt{2}}{2} =\]
\[= - \sqrt{2}\]
\[\textbf{б)}\ c \geq 4\ \]
\[\sqrt{\frac{c + 4}{4} + {\sqrt{c}}^{\backslash 4}} - \sqrt{\frac{c + 4}{4} - {\sqrt{c}}^{\backslash 4}} =\]
\[= \sqrt{\frac{c + 4 + 4\sqrt{c}}{4}} - \sqrt{\frac{c + 4 - 4\sqrt{c}}{4}} =\]
\[= \sqrt{\frac{\left( \sqrt{c} + 2 \right)^{2}}{4}} - \sqrt{\frac{\left( \sqrt{c} - 2 \right)^{2}}{4}} =\]
\[= \frac{\sqrt{c} + 2}{2} - \frac{\sqrt{c} - 2}{2} =\]
\[= \frac{\sqrt{c} + 2 - \sqrt{c} + 2}{2} = \frac{4}{2} = 2\]
\[\boxed{\text{452.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше.
Для отрицательных дробей наоборот: больше та дробь, знаменатель которой больше.
Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше.
Решение.
\[\textbf{а)}\ 0 < x < 0,0020\]
\[0,002 > 0,001 > 0,0011 >\]
\[> 0,00111 > 0,0012 > 0,0013\]
\[\textbf{б)} - \frac{1}{11} < x < 0\]
\[- \frac{1}{11} < - \frac{1}{12} < - \frac{1}{13} < - \frac{1}{14} <\]
\[< - \frac{1}{100} < - \frac{1}{1000}\]
\[\textbf{в)}\ \frac{1}{3} < a < \frac{1}{2}\]
\[\frac{40}{120} < a < \frac{60}{120}\]
\[a = \left\{ \frac{41}{120};\frac{45}{120};\frac{50}{120};\frac{55}{120};\frac{59}{120} \right\}\]