\[\boxed{\text{442\ (442).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Формула\ для\ вычисления\ \]
\[площади\ кольца:\]
\[S = \pi\left( R^{2} - r^{2} \right).\]
\[Выразим\ радиус\ внешнего\ \]
\[круга\ (R)\ из\ формулы\ (не\ \]
\[может\ быть\ отрицательным\ \]
\[числом):\]
\[R^{2} - r^{2} = \frac{S}{\pi}\]
\[R^{2} = \frac{S}{\pi} + r^{2}\]
\[R = \sqrt{\frac{S}{\pi} + r^{2}}.\]
\[\boxed{\text{442.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Освободиться от иррациональности в знаменателе дроби – значит, заменить дробь тождественно равной дробью, не содержащей в знаменателе знак корня.
Для этого нужно домножить дробь на выражение, чтобы получить множители, как в формуле разности квадратов:
\[(a - b)(a + b) = a^{2} - b^{2}.\]
Решение.
\[\textbf{а)}\frac{\sqrt{4 - \sqrt{11}}}{\sqrt{4 + \sqrt{11}}} =\]
\[= \frac{\sqrt{4 + \sqrt{11}} \cdot \sqrt{4 - \sqrt{11}}}{\sqrt{4 + \sqrt{11}} \cdot \sqrt{4 - \sqrt{11}}} =\]
\[= \frac{4 - \sqrt{11}}{\sqrt{16 - 11}} = \frac{4 - \sqrt{11}}{\sqrt{5}} =\]
\[= \frac{\sqrt{5}\left( 4 - \sqrt{11} \right)}{\sqrt{5} \cdot \sqrt{5}} = \frac{4\sqrt{5} - \sqrt{55}}{5}\]
\[\textbf{б)}\ \frac{\sqrt{\sqrt{5} + \sqrt{3}}}{\sqrt{\sqrt{5} - \sqrt{3}}} =\]
\[= \frac{\sqrt{\sqrt{5} + \sqrt{3}} \cdot \sqrt{\sqrt{5} + \sqrt{3}}}{\sqrt{\sqrt{5} - \sqrt{3}} \cdot \sqrt{\sqrt{5} + \sqrt{3}}} =\]
\[= \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5 - 3}} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{2}} =\]
\[= \frac{\sqrt{2}\left( \sqrt{5} + \sqrt{3} \right)}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{10} + \sqrt{6}}{2}\]
\[\textbf{в)}\ \frac{\sqrt{\sqrt{5} - 2}}{\sqrt{\sqrt{5} + 2}} =\]
\[= \frac{\sqrt{\sqrt{5} - 2} \cdot \sqrt{\sqrt{5} - 2}}{\sqrt{\sqrt{5} + 2} \cdot \sqrt{\sqrt{5} - 2}} =\]
\[= \frac{\sqrt{5} - 2}{\sqrt{5 - 4}} = \frac{\sqrt{5} - 2}{\sqrt{1}} = \sqrt{5} - 2\]