\[\boxed{\text{440\ (440).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\mathbf{Воспользуемся\ формулами:}\]
\[\mathbf{a}^{\mathbf{2}}\mathbf{-}\mathbf{b}^{\mathbf{2}}\mathbf{=}\left( \mathbf{a - b} \right)\left( \mathbf{a + b} \right)\mathbf{;}\]
\[\mathbf{a}^{\mathbf{2}}\mathbf{+ 2}\mathbf{ab +}\mathbf{b}^{\mathbf{2}}\mathbf{=}\left( \mathbf{a + b} \right)^{\mathbf{2}}\mathbf{.}\]
Решение.
\[\frac{9 - x^{2}}{\mathbf{4}\mathbf{x}} \cdot \frac{\mathbf{8}\mathbf{x}}{x^{2} + 6x + 9} - 2 =\]
\[= \frac{(3 - x)(3 + x) \cdot 2}{(x + 3)^{2}} - 2 =\]
\[= \frac{2(3 - x) - 2(x + 3)}{x + 3} =\]
\[= \frac{6 - 2x - 2x - 6}{x + 3} = \frac{- 4x}{x + 3}\]
\[При\ x = - 2,5:\]
\[- \frac{4x}{x + 3} = - \frac{4 \cdot ( - 2,5)}{- 2,5 + 3} = \frac{10}{0,5} =\]
\[= \frac{100}{5} = 20.\]
\[\boxed{\text{440.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Воспользуемся формулами:
\[(a - b)^{2} = a^{2} - 2ab + b^{2};\]
\[(a + b)^{2} = a^{2} + 2ab + b^{2};\]
\[a^{2} - b^{2} = (a - b)(a + b).\]
Решение.
\[a² = \left( \sqrt{11 + \sqrt{85}} - \sqrt{11 - \sqrt{85}} \right)^{2} =\]
\[= 22 - 2\sqrt{11^{2} - \left( \sqrt{85} \right)^{2}} =\]
\[= 22 - 2\sqrt{121 - 85} =\]
\[= 22 - 2\sqrt{36} = 22 - 2 \cdot 6 =\]
\[= 22 - 12 = 10\]
\[a^{2} = \left( \sqrt{3 + \sqrt{5}} + \sqrt{3 - \sqrt{5}} \right)^{2} =\]
\[= 6 + 2\sqrt{9 - 5} = 6 + 2\sqrt{4} =\]
\[= 6 + 2 \cdot 2 = 10\]