\[\boxed{\text{433\ (433).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{4}{\sqrt{3} + 1} = \frac{4 \cdot \left( \sqrt{3} - 1 \right)}{\left( \sqrt{3} + 1 \right)\left( \sqrt{3} - 1 \right)} =\]
\[= \frac{4 \cdot \left( \sqrt{3} - 1 \right)}{3 - 1} = \frac{4 \cdot \left( \sqrt{3} - 1 \right)}{2} =\]
\[= 2(\sqrt{3} - 1)\]
\[\textbf{б)}\ \frac{1}{1 - \sqrt{2}} = \frac{1 \cdot \left( 1 + \sqrt{2} \right)}{\left( 1 - \sqrt{2} \right)\left( 1 + \sqrt{2} \right)} =\]
\[= \frac{1 + \sqrt{2}}{1 - 2} = - \left( 1 + \sqrt{2} \right) =\]
\[= - 1 - \sqrt{2}\]
\[\textbf{в)}\ \frac{1}{\sqrt{x} - \sqrt{y}} =\]
\[= \frac{1 \cdot \left( \sqrt{x} + \sqrt{y} \right)}{\left( \sqrt{x} - \sqrt{y} \right)\left( \sqrt{x} + \sqrt{y} \right)} =\]
\[= \frac{\sqrt{x} + \sqrt{y}}{x - y}\]
\[\textbf{г)}\ \frac{a}{\sqrt{a} + \sqrt{b}} =\]
\[= \frac{a\left( \sqrt{a} - \sqrt{b} \right)}{\left( \sqrt{a} + \sqrt{b} \right)\left( \sqrt{a} - \sqrt{b} \right)} =\]
\[= \frac{a(\sqrt{a} - \sqrt{b})}{a - b}\]
\[\textbf{д)}\frac{33}{7 - 3\sqrt{3}} =\]
\[= \frac{33 \cdot \left( 7 + 3\sqrt{3} \right)}{\left( 7 + 3\sqrt{3} \right)\left( 7 - 3\sqrt{3} \right)} =\]
\[= \frac{33 \cdot \left( 7 + 3\sqrt{3} \right)}{49 - 9 \cdot 3} =\]
\[= \frac{33 \cdot \left( 7 + 3\sqrt{3} \right)}{49 - 27} =\]
\[= \frac{33 \cdot (7 + 3\sqrt{3})}{22} = \frac{21 + 9\sqrt{3}}{2}\]
\[\textbf{е)}\ \frac{15}{2\sqrt{5} + 5} =\]
\[= \frac{15\left( 2\sqrt{5} - 5 \right)}{\left( 2\sqrt{5} + 5 \right)\left( 2\sqrt{5} - 5 \right)} =\]
\[= \frac{15\left( 2\sqrt{5} - 5 \right)}{4 \cdot 5 - 25} =\]
\[= \frac{15\left( 2\sqrt{5} - 5 \right)}{20 - 25} =\]
\[= \frac{15\left( 2\sqrt{5} - 5 \right)}{- 5} =\]
\[= - 3\left( 2\sqrt{5} - 5 \right) = - 6\sqrt{5} + 15\]
\[\boxed{\text{433.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Воспользуемся формулами:
\[\mathbf{a}^{\mathbf{2}}\mathbf{-}\mathbf{b}^{\mathbf{2}}\mathbf{=}\left( \mathbf{a - b} \right)\left( \mathbf{a + b} \right)\mathbf{;}\]
\[\mathbf{a}^{\mathbf{2}}\mathbf{+ 2}\mathbf{ab +}\mathbf{b}^{\mathbf{2}}\mathbf{=}\left( \mathbf{a + b} \right)^{\mathbf{2}}\mathbf{.}\]
Решение.
\[= \frac{2(3 - x) - 2(x + 3)}{x + 3} =\]
\[= \frac{6 - 2x - 2x - 6}{x + 3} = \frac{- 4x}{x + 3}\]
\[При\ x = - 2,5:\]
\[- \frac{4x}{x + 3} = - \frac{4 \cdot ( - 2,5)}{- 2,5 + 3} = \frac{10}{0,5} =\]
\[= \frac{100}{5} = 20.\]