\[\boxed{\text{405\ (405).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ y = 2x + 2\ \rightarrow график\ a).\]
\[k = 2 > 0 \rightarrow графикграфик\ \]
\[возрастает.\]
\[b = 2 \rightarrow графикграфик\ \]
\[пересекает\ ось\ \text{y\ }в\ точке\ (0;2).\ \]
\[2)\ y = - \frac{x}{4} - 3\ \rightarrow график\ c).\]
\[k = - \frac{1}{4} < 0 \rightarrow график\ убывает.\]
\[b = - 3 \rightarrow график\ пересекает\ \]
\[ось\ \text{y\ }в\ точке\ (0; - 3).\ \]
\[3)\ y = - 2x + 2\ \rightarrow график\ b).\]
\[k = - 2 \rightarrow график\ убывает.\]
\[b = 2 \rightarrow график\ пересекает\ \]
\[ось\ \text{y\ }в\ точке\ (0;2).\]
\[\boxed{\text{405.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ 3\sqrt{\frac{1}{3}} = \sqrt{3^{2}} \cdot \sqrt{\frac{1}{3}} = \ \sqrt{9 \cdot \frac{1}{3}} =\]
\[= \sqrt{3}\]
\[\textbf{б)}\ 2\sqrt{\frac{3}{4}} = \sqrt{2^{2}} \cdot \sqrt{\frac{3}{4}} = \sqrt{4 \cdot \frac{3}{4}} =\]
\[= \sqrt{3}\]
\[\textbf{в)}\ \frac{1}{3}\sqrt{18} = \sqrt{\left( \frac{1}{3} \right)^{2}} \cdot \sqrt{18} =\]
\[= \sqrt{\frac{1}{9} \cdot 18} = \sqrt{2}\ \]
\[\textbf{г)} - 10\sqrt{0,02} =\]
\[= - \sqrt{10^{2}} \cdot \sqrt{0,02} =\]
\[= - \sqrt{100 \cdot 0,02} = - \sqrt{2}\]
\[\textbf{д)}\ 5\sqrt{\frac{a}{5}\ } = \sqrt{5^{2}} \cdot \sqrt{\frac{a}{5}} = \sqrt{25 \cdot \frac{a}{5}} =\]
\[= \sqrt{5a}\]
\[\textbf{е)} - \frac{1}{2}\sqrt{12x} = - \sqrt{\left( \frac{1}{2} \right)^{2}} \cdot \sqrt{12x} =\]
\[= - \sqrt{\frac{1}{4} \cdot 12x} = - \sqrt{3x}\]
\[\textbf{ж)} - 0,1\sqrt{1,2a} =\]
\[= - \sqrt{{0,1}^{2}} \cdot \sqrt{1,2a} =\]
\[= - \sqrt{0,01 \cdot 1,2a} = - \sqrt{0,012a}\]
\[\textbf{з)} - \frac{1}{3}\sqrt{0,9a} =\]
\[= - \sqrt{\left( \frac{1}{3} \right)^{2}} \cdot \sqrt{0,9a} =\]
\[= - \sqrt{\frac{1}{9} \cdot \frac{9}{10}a} = - \sqrt{\frac{1}{10}a} =\]
\[= - \sqrt{0,1a}\]
\[\textbf{и)} - 6\sqrt{6b} = - \sqrt{6^{2}} \cdot \sqrt{6b} =\]
\[= - \sqrt{36 \cdot 6b} = - \sqrt{216b}\ \]