\[\boxed{\text{402\ (402).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[Воспользуемся\ свойством\ \]
\[степеней:\]
\[\mathbf{a}^{\mathbf{\text{mn}}}\mathbf{=}\left( \mathbf{a}^{\mathbf{m}} \right)^{\mathbf{n}}\mathbf{.}\]
\[\textbf{а)}\ \sqrt{11^{4}} = \sqrt{\left( 11^{2} \right)^{2}} = |11^{2}| =\]
\[= 121\]
\[\textbf{б)}\ \sqrt{4^{6}} = \sqrt{\left( 4^{3} \right)^{2}} = \left| 4^{3} \right| = 64\]
\[\textbf{в)}\ \sqrt{( - 3)^{8}} = \sqrt{\left( \left( - 3^{4} \right) \right)^{2}\ } =\]
\[= \left| ( - 3)^{4} \right| = |81| = 81\]
\[\textbf{г)}\ \sqrt{( - 6)^{4}} = \sqrt{\left( ( - 6)^{2} \right)^{2}\ } =\]
\(= {|( - 6)}^{2}|\ = |36| = 36\)
\[\textbf{д)}\ \sqrt{2^{8} \cdot 3^{2}} = \sqrt{\left( 2^{4} \cdot 3 \right)^{2}} =\]
\[= \left| 2^{4} \cdot 3 \right| = |16| \cdot 3 = 48\]
\[\textbf{е)}\ \sqrt{3^{4} \cdot 5^{6}} = \sqrt{\left( 3^{2} \cdot 5^{3} \right)^{2}} =\]
\[= \left| 3^{2} \cdot 5^{3} \right| = 9 \cdot 125 = 1125\]
\[\textbf{ж)}\ \sqrt{7^{2} \cdot 2^{8}} = \sqrt{\left( 7 \cdot 2^{4} \right)^{2}} =\]
\[= \left| 7 \cdot 2^{4} \right| = 7 \cdot 16 = 112\]
\[\textbf{з)}\ \sqrt{3^{6} \cdot 5^{4}} = \sqrt{\left( 3^{3} \cdot 5^{2} \right)^{2}} =\]
\[= \left| 3^{3} \cdot 5^{2} \right| = 27 \cdot 25 = 135 \cdot 5 =\]
\[= 675\ \]
\[\textbf{и)}\ \sqrt{8^{4} \cdot 5^{6}} = \sqrt{\left( 8^{2} \cdot 5^{3} \right)^{2}} =\]
\[= \left| 8^{2} \cdot 5^{3} \right| = 8 \cdot 25 \cdot 8 \cdot 5 =\]
\[= 200 \cdot 40 = 8000\]
\[\boxed{\text{402.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Корень из произведения неотрицательных множителей (больших или равных нуля), равен произведению корней из этих множителей:
\[\sqrt{\mathbf{\text{ab}}}\mathbf{=}\sqrt{\mathbf{a}}\mathbf{\cdot}\sqrt{\mathbf{b}}\mathbf{.}\]
Если корень из всего числа не извлекается, его нужно разложить на множители таким образом, чтобы можно было извлечь корень из одного множителя.
Решение.
\[\textbf{а)}\ \sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5}\ \]
\[\textbf{б)}\ \sqrt{98} = \sqrt{49 \cdot 2} = 7\sqrt{2}\]
\[\textbf{в)}\ \sqrt{200} = \sqrt{2 \cdot 100} = 10\sqrt{2}\]
\[\textbf{г)}\ \sqrt{160} = \sqrt{16 \cdot 10} = 4\sqrt{10}\]
\[\textbf{д)}\ 0,2\sqrt{75} = 0,2\sqrt{25 \cdot 3} =\]
\[= 0,2 \cdot 5\sqrt{3} = \sqrt{3}\]
\[\textbf{е)}\ 0,7\sqrt{300} = 0,7\sqrt{3 \cdot 100} = 7\sqrt{3}\]
\[\textbf{ж)} - 0,125\sqrt{192} =\]
\[= - 0,125\sqrt{64 \cdot 3} = - \sqrt{3}\]
\[\textbf{з)} - \frac{1}{3}\sqrt{450} = - \frac{1}{3}\sqrt{9252} =\]
\[= - \frac{1}{3} \cdot 15\sqrt{2} = - 5\sqrt{2}\ \]