\[\boxed{\text{381\ (381).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\sqrt{n^{2} - 75} = m,\ \ где\ m \in N\]
\[\left( \sqrt{n^{2} - 75} \right)^{2} = m^{2}\]
\[n^{2} - 75 = m^{2}\]
\[n^{2} - m^{2} = 75\]
\[(n - m)(n + m) = 75\]
\[\left\{ \begin{matrix} n - m = 1\ \ \\ n + m = 75 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} n = 38\ \ \\ m = 37 \\ \end{matrix} \right.\ \ \]
\[\left\{ \begin{matrix} n - m = 3\ \ \\ n + m = 25 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} n = 14\ \\ m = 11 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} n - m = 5\ \ \\ n + m = 15 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} n = 10 \\ m = 5\ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} n - m = 75 \\ n + m = 1\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} n = 38\ \ \ \ \ \\ m = - 37 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} n - m = 25 \\ n + m = 3\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} n = 14\ \ \ \ \ \\ m = - 11 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} n - m = 15 \\ n + m = 5\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} n = 10\ \ \\ m = - 5 \\ \end{matrix} \right.\ \]
\[Ответ:при\ n = \left\{ 10;14;38 \right\}.\]
\[\boxed{\text{381.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[Удобнее\ второй\ способ\ \]
\[(сначала\ преобразовать\ \]
\[выражение,\ а\ потом\ найти\ его\ \]
\[значение):\]
\[\sqrt{2} \cdot \sqrt{3} = \sqrt{6} \approx 2,45.\]