\[\boxed{\text{234\ (234).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{x^{2} - 3x + 6}{x - 3} =\]
\[= \frac{x^{2} - 3x}{x - 3} + \frac{6}{x - 3} =\]
\[= \frac{x(x - 3)}{x - 3} + \frac{6}{x - 3} = x + \frac{6}{x - 3}\]
\[\textbf{б)}\ \frac{y^{2} + 5y - 8}{y + 5} =\]
\[\frac{y^{2} + 5y}{y + 5} - \frac{8}{y + 5} =\]
\[= \frac{y(y + 5)}{y + 5} - \frac{8}{y + 5} = y - \frac{8}{y + 5}\]
\[\textbf{в)}\ \frac{a^{2} + 7a + 2}{a + 6} =\]
\[= \frac{a^{2} + 6a + a + 2}{a + 6} =\]
\[= \frac{a^{2} + 6a}{a + 6} + \frac{a + 2}{a + 6} =\]
\[= \frac{a(a + 6)}{a + 6} + \frac{a + 2}{a + 6} =\]
\[= a + \frac{a + 2}{a + 6}\]
\[\textbf{г)}\ \frac{3b^{2} - 10b - 1}{b - 3} =\]
\[= \frac{3b^{2} - 9b - b - 1}{b - 3} =\]
\[= \frac{3b^{2} - 9b}{b - 3} - \frac{b + 1}{b - 3} =\]
\[= \frac{3b(b - 3)}{b - 3} - \frac{b + 1}{b - 3} =\]
\[= 3b - \frac{b + 1}{b - 3}\]
\[\boxed{\text{234.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Упростим выражение, приведя дроби к общему знаменателю и выполнив действия.
Дробь равна нулю только тогда, когда числитель равен нулю.
Решение.
\[\frac{c - a + b - c + a - b}{(a - b)(b - c)(c - a)} =\]
\[= \frac{0}{(a - b)(b - c)(c - a)} = 0\]
\[Что\ и\ требовалось\ доказать.\]