Решебник по алгебре 8 класс Макарычев ФГОС Задание 230

Авторы:
Год:2021
Тип:учебник

Задание 230

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение

\[\boxed{\text{230\ (230).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[\frac{c - a + b - c + a - b}{(a - b)(b - c)(c - a)} =\]

\[= \frac{0}{(a - b)(b - c)(c - a)} = 0\]

\[Что\ и\ требовалось\ доказать.\]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{230.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

Пояснение.

Приведем дроби к общему знаменателю: буквенные множители берем с наибольшим показателем степеней. Выполним вычисления и сокращения (при необходимости).

Решение.

\[\textbf{а)}\ \frac{3b^{2} - 5b - 1}{b^{2}y} + \frac{5b - 3^{\backslash b}}{\text{by}} =\]

\[= \frac{3b^{2} - 5b - 1 + 5b^{2} - 3b}{b^{2}y} =\]

\[= \frac{8b^{2} - 8b - 1}{b²y}\]

\[\textbf{б)}\ \frac{a^{2} - a + 1^{\backslash x^{2}}}{a^{3}x} - \frac{x^{2} - 1^{\backslash a^{2}}}{ax^{3}} =\]

\[= \frac{a^{2}x^{2} - ax^{2} + x^{2} - a^{2}x^{2} + a^{2}}{a^{3}x^{3}} =\]

\[= \frac{a^{2} - ax^{2} + x²}{a³x³}\]

\[\textbf{в)}\ \frac{1 + c^{\backslash y^{4}}}{c^{3}y^{4}} - \frac{c^{3} + {y^{4}}^{\backslash c}}{c^{2}y^{8}} =\]

\[= \frac{y^{4} + cy^{4} - с^{4} - сy^{4}}{c^{3}y^{8}} = \frac{y^{4} - с^{4}}{c³y^{8}}\]

\[\textbf{г)}\ \frac{c^{2} + {x^{2}}^{\backslash c}}{c^{2}x^{5}} - \frac{c + x^{\backslash x^{2}}}{c^{3}x^{3}} =\]

\[= \frac{c^{3} + cx^{2} - cx^{2} - x^{3}}{c^{3}x^{5}} = \frac{c^{3} - x³}{c³x^{5}}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам