\[\boxed{\text{226\ (226).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{3b^{2} - 5b - 1}{b^{2}y} + \frac{5b - 3^{\backslash b}}{\text{by}} =\]
\[= \frac{3b^{2} - 5b - 1 + 5b^{2} - 3b}{b^{2}y} =\]
\[= \frac{8b^{2} - 8b - 1}{b^{2}y}\]
\[\textbf{б)}\ \frac{a^{2} - a + 1^{\backslash x^{2}}}{a^{3}x} - \frac{x^{2} - 1^{\backslash a^{2}}}{ax^{3}} =\]
\[= \frac{a^{2}x^{2} - ax^{2} + x^{2} - a^{2}x^{2} + a^{2}}{a^{3}x^{3}} =\]
\[= \frac{a^{2} - ax^{2} + x^{2}}{a^{3}x^{3}}\]
\[\textbf{в)}\ \frac{1 + c^{\backslash y^{4}}}{c^{3}y^{4}} - \frac{c^{3} + {y^{4}}^{\backslash c}}{c^{2}y^{8}} =\]
\[= \frac{y^{4} + cy^{4} - с^{4} - сy^{4}}{c^{3}y^{8}} = \frac{y^{4} - с^{4}}{c^{3}y^{8}}\]
\[\textbf{г)}\ \frac{c^{2} + {x^{2}}^{\backslash c}}{c^{2}x^{5}} - \frac{c + x^{\backslash x^{2}}}{c^{3}x^{3}} =\]
\[= \frac{c^{3} + cx^{2} - cx^{2} - x^{3}}{c^{3}x^{5}} = \frac{c^{3} - x^{3}}{c^{3}x^{5}}\]
\[\boxed{\text{226.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\frac{a}{b} - нельзя\ сократить,\ так\ как:\]
\[1 - \frac{a}{b} = \frac{b}{b} - \frac{a}{b} = \frac{b - a}{b}.\]
\[Допустим,\ что\ \frac{b - a}{b}\ можно\ \]
\[сократить:\]
\[\frac{b - a}{b} = \frac{\text{xy}}{\text{xz}}\]
\[b - a = xy\]
\[a = b - xy\]
\[b = xz\]
\[a = xz - xy\]
\[\frac{a}{b} = \frac{xz - xy}{\text{xz}} = \frac{x(z - y)}{\text{xz}} = \frac{z - y}{z}\]
\[то\ есть:\ \frac{a}{b} - несократимая\ \]
\[дробь:что\ и\ требовалось\ \]
\[доказать.\ \]