\[\boxed{\text{1302.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[Пусть\ x\ и\ y - скорости\ \]
\[автомобилей.\]
\[Расстояние\ между\ \]
\[пунктами\ равно\ S.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} \frac{S}{y} + \frac{S}{x} = 1,1\ \ \ \ \ \ \\ 3 \cdot (x + y) = S \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} \frac{Sx - Sy}{\text{xy}} = 1,1 \\ x + y = \frac{S}{3}\text{\ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} S(x - y) = 1,1xy \\ x = \frac{S}{3} - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[S\left( \frac{S}{3} - y - y \right) = 1,1y\left( \frac{S}{3} - y \right)\]
\[S\left( \frac{S - 6y}{3} \right) =\]
\[= 1,1y\left( \frac{S - 3y}{3} \right)\ \ \ | \cdot 3\]
\[S(S - 6y) = 1,1y(S - 3y)\]
\[S² - 6yS = 1,1yS - 3,3y²\]
\[3,3y² - 7,1yS + S^{2} = 0\ \ \ | \cdot 10\]
\[33y^{2} - 71yS + 10S = 0\]
\[D = \left( 71S^{2} \right) - 4 \cdot 33 \cdot 10 \cdot S^{2} =\]
\[= 5041S^{2} - 1320S^{2} = 3721S^{2}\]
\[y_{1,2} = \frac{71S \pm 61S}{66}\]
\[y_{1} = \frac{132S}{66},\ \ y_{1} = 2S\]
\[y_{2} = \frac{5}{33}S\]
\[x_{1} = \frac{S}{3} - 2S < 0 \Longrightarrow \varnothing\]
\[x_{2} = \frac{S}{33} - \frac{5S}{33} = \frac{2S}{11}\]
\[\frac{x}{y} = \frac{2S}{11}\ :\frac{5S}{33} = \frac{2S}{11} \cdot \frac{33}{5S} = \frac{6}{5} =\]
\[= 1,2\ (раза).\]
\[Ответ:в\ 1,2\ раза.\]