\[\boxed{\text{1303.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[Пусть\ \ x\ и\ y - скорости\]
\(\ самосвалов.\)
\[Примем\ всю\ руду\ за\ 1.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} \frac{1}{x} + 3 = \frac{1}{y}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \frac{1}{3x} + \frac{2}{3y} = \frac{1}{x + 3} + 7\frac{1}{3} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} \frac{1}{x} = \frac{1}{y} - 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \frac{1}{3} \cdot \frac{1}{x} + \frac{2}{3y} = \frac{1}{x + y} + \frac{22}{3}\text{\ \ }(1) \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = \frac{y}{1 - 3y}\ \ \ \ \ \ подставляем\ в\ (1) \\ \frac{1}{3} \cdot \left( \frac{1}{y} - 3 \right) + \frac{2}{3y} = \frac{1}{\frac{y}{1 - 3y} + y} + \frac{22}{3} \\ \end{matrix} \right.\ \]
\[\frac{1}{3y} - 1 + \frac{2}{3y} =\]
\[= \frac{1(1 - 3y)}{y + y(1 - 3y)} + \frac{22}{3}\]
\[\frac{3}{3y} - 1 = \frac{1 - 3y}{y + y(1 - 3y)} + \frac{22}{3}\]
\[\frac{1 - y}{y} = \frac{3 - 9y + 44y - 66y^{2}}{3 \cdot \left( 2y - 3y^{2} \right)}\]
\[\frac{1 - y}{y} = \frac{3 + 35y - 66y^{2}}{3 \cdot \left( 2y - 3y^{2} \right)}\]
\[3y + 35y^{2} - 66y^{3} =\]
\[= 3 \cdot \left( 2y - 3y^{2} \right)(1 - y)\]
\[3y + 35y^{2} - 66y^{3} = 6y -\]
\[- 9y^{2} - 6y^{2} + 9y³\]
\[75y^{3} - 50y^{2} + 3y = 0\]
\[y\left( 75y^{2} - 50y + 3 \right) = 0,\]
\[\ \ y = 0 \Longrightarrow не\ может\ быть.\]
\[75y^{2} - 50y + 3 = 0\]
\[D = 2500 - 4 \cdot 3 \cdot 75 = 1600\]
\[y_{1,2} = \frac{50 \pm 400}{150} = \frac{3}{5};\ \ \ \frac{1}{15}\]
\[x_{1} = \frac{3}{5}\ :\left( 1 - \frac{9}{5} \right) < 0 \Longrightarrow не\ \]
\[может\ быть.\]
\[x_{2} = \frac{1}{15}\ :\left( 1 - \frac{3}{15} \right) =\]
\[= \frac{1}{15} \cdot \frac{15}{12} = \frac{1}{12}\]
\[то\ есть,\ t_{1} = 15\ ч,\]
\[\text{\ \ }t_{2} = 12\ ч - время\ самосвалов.\]
\[Ответ:15\ ч\ и\ 12\ ч.\]