Условие:
1. Выполните действия:
1) (14m^4 c)/n^6 *n^5/(35mc^6 )
2) (36x^3)/y^2 :(9x^6 y)
3) (8m+8n)/a^5 *(5a^10)/(m^2-n^2 )
4) (3x-15)/(x+4) :(x^2-25)/(3x+12)
2. Упростите выражение:
1)7c/(c+2)-(c-8)/(3c+6)*84/(c^2-8c)
2) ((a-2)/(a+2)-(a+2)/(a-2)) :2a/(4-a^2 )
3. Докажите тождество:
((2y+1)/(y^2+6y+9)-(y-2)/(y^2+3y)) :(y^2+6y)/(y^3-9y)=(y-3)/(y+3).
4. Известно, что 16x^2 +1/x^2 =89. Найдите значение выражения 4x-1/x.
Решение:
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{14m^{4}c}{n^{6}} \cdot \frac{n^{5}}{35mc^{6}} =\]
\[= \frac{14m^{4}c \cdot n^{5}}{n^{6} \cdot 35mc^{6}} = \frac{2m^{3}}{7c^{5}n}\]
\[2)\frac{36x^{3}}{y^{2}}\ :\left( 9x^{6}y \right) = \frac{36x^{3}}{y^{2} \cdot 9x^{6}y} =\]
\[= \frac{4}{x^{3}y^{3}}\]
\[3)\frac{8m + 8n}{a^{5}} \cdot \frac{5a^{10}}{m^{2} - n^{2}} =\]
\[= \frac{8(m + n) \cdot 5a^{10}}{a^{5}(m - n)(m + n)} = \frac{40a^{5}}{m - n}\]
\[4)\frac{3x - 15}{x + 4}\ :\frac{x^{2} - 25}{3x + 12} =\]
\[= \frac{3x - 15}{x + 4} \cdot \frac{3x + 12}{x^{2} - 25\ } =\]
\[= \frac{3(x - 5) \cdot 3(x + 4)}{(x + 4)(x - 5)(x + 5)} = \frac{9}{x + 5}\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{7c}{c + 2} - \frac{c - 8}{3c + 6} \cdot \frac{84}{c^{2} - 8c} =\]
\[= \frac{7c}{c + 2} - \frac{(c - 8) \cdot 84}{3(c + 2) \cdot c(c - 8)} =\]
\[= \frac{7c^{\backslash c}}{c + 2} - \frac{28}{c(c + 2)} = \frac{7c^{2} - 28}{c(c + 2)} =\]
\[= \frac{7\left( c^{2} - 4 \right)}{c(c + 2)} = \frac{7(c - 2)(c + 2)}{c(c + 2)} =\]
\[= \frac{7c - 14}{c}\]
\[2)\ \left( \frac{a - 2^{\backslash a - 2}}{a + 2} - \frac{a + 2^{\backslash a + 2}}{a - 2} \right)\ :\frac{2a}{4 - a²} =\]
\[= \frac{a^{2} - 4a + 4 - a^{2} - 4a - 4}{(a + 2)(a - 2)} \cdot \frac{4 - a^{2}}{2a} =\]
\[= \frac{- 8a\left( 4 - a^{2} \right)}{- \left( 4 - a^{2} \right) \cdot 2a} = 4\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[= \frac{\left( y^{2} + 6 \right) \cdot y\left( y^{2} - 9 \right)}{y(y + 3)^{2}\left( y^{2} + 6 \right)} =\]
\[= \frac{(y - 3)(y + 3)}{(y + 3)^{2}} = \frac{y - 3}{y + 3}\]
\[\frac{y - 3}{y + 3} = \frac{y - 3}{y + 3}\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[16x^{2} + \frac{1}{x^{2}} = 89;\ \ \ 4x - \frac{1}{x} = ?\]
\[16x^{2} - 8x \cdot \frac{1}{x} + \frac{1}{x^{2}} = 89 - 8x \cdot \frac{1}{x}\]
\[\left( 4x - \frac{1}{x} \right)^{2} = 89 - 8\]
\[\left( 4x - \frac{1}{x} \right)^{2} = 81\]
\[4x - \frac{1}{x} = 9;\]
\[4x - \frac{1}{x} = - 9.\]
\[Ответ:\ - 9;\ \ 9.\]