Решебник по алгебре 8 класс Мерзляк контрольные работы КР-2. Умножение и деление рациональных дробей. Тождественные преобразования рациональных выражений Вариант 2

Авторы:
Тип:контрольные и самостоятельные
Серия:Пособие для учителей

Вариант 2

Условие:

1. Выполните действия:

1) (25x^2 p)/y^3 *y^6/(15x^8 )

2) (30m^2)/n :(6m^10 n^2 )

3) (7x+7y)/a^4 *(6a^8)/(x^2-y^2 )

4) (4a^2-1)/(4a-12) :(6a+3)/(a-3)

2. Упростите выражение:

1)3a/(a-4)-(a+2)/(2a-8)*96/(a^2+2a)

2) ((a+7)/(a-7)-(a-7)/(a+7)) :14a/(49-a^2 )

3. Докажите тождество:

((2x+5)/(x^2+4x+4)-(x+3)/(x^2+2x)) :(x^2-6)/(x^3-4x)=(x-2)/(x+2)

4. Известно, что x^2+25/x^2=54. Найдите значение выражения x+5/x.

Решение:

\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]

\[1)\frac{25x^{2}p}{y^{3}} \cdot \frac{y^{6}}{15x^{8}} = \frac{25x^{2}p \cdot y^{6}}{y^{3} \cdot 15x^{8}} =\]

\[= \frac{5y^{3}p}{3x^{6}}\]

\[2)\frac{30m^{2}}{n}\ :\left( 6m^{10}n^{2} \right) =\]

\[= \frac{30m^{2}}{n \cdot 6m^{10}n^{2}} = \frac{5}{m^{8}n^{3}}\]

\[3)\frac{7x + 7y}{a^{4}} \cdot \frac{6a^{8}}{x^{2} - y^{2}} =\]

\[= \frac{7(x + y) \cdot 6a^{8}}{a^{4}(x - y)(x + y)} = \frac{42a^{4}}{x - y}\]

\[4)\frac{4a^{2} - 1}{4a - 12}\ :\frac{6a + 3}{a - 3} =\]

\[= \frac{4a^{2} - 1}{4a - 12} \cdot \frac{a - 3}{6a + 3} =\]

\[= \frac{(2a - 1)(2a + 1)(a - 3)}{4(a - 3) \cdot 3 \cdot (2a + 1)} =\]

\[= \frac{2a - 1}{12}\]

\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]

\[1)\frac{3a}{a - 4} - \frac{a + 2}{2a - 8} \cdot \frac{96}{a^{2} + 2a} =\]

\[= \frac{3a}{a - 4} - \frac{(a + 2) \cdot 96}{2(a - 4) \cdot a(a + 2)} =\]

\[= \frac{3a^{\backslash a}}{a - 4} - \frac{48}{a(a - 4)} =\]

\[= \frac{3a^{2} - 48}{a(a - 4)} = \frac{3\left( a^{2} - 16 \right)}{a(a - 4)} =\]

\[= \frac{3(a - 4)(a + 4)}{a(a - 4)} = \frac{3a + 12}{a}\]

\[= \frac{28a(49 - a^{2})}{\left( a^{2} - 49 \right) \cdot 14a} = - 2\]

\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]

\[\left( \frac{2x + 5}{x^{2} + 4x + 4} - \frac{x + 3}{x^{2} + 2x} \right)\ :\frac{x^{2} - 6}{x^{3} - 4x} =\]

\[= \frac{\left( x^{2} - 6 \right) \cdot x\left( x^{2} - 4 \right)}{x(x + 2)^{2} \cdot \left( x^{2} - 6 \right)} =\]

\[= \frac{(x - 2)(x + 2)}{(x + 2)^{2}} = \frac{x - 2}{x + 2}\]

\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]

\[x^{2} + \frac{25}{x^{2}} = 54;\ \ x + \frac{5}{x} = ?\]

\[x^{2} + 2x \cdot \frac{5}{x} + \left( \frac{5}{x} \right)^{2} = 54 + 2x \cdot \frac{5}{x}\]

\[\left( x + \frac{5}{x} \right)^{2} = 54 + 10\]

\[\left( x + \frac{5}{x} \right)^{2} = 64\]

\[x + \frac{5}{x} = 8;\]

\[x + \frac{5}{x} = - 8.\]

\[Ответ:\ - 8;8.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам