Условие:
1. Выполните действия:
1) (24b^2 c)/a^4 *a^5/(16bc^3 )
2) 40b/c^3 :(8b^5 c^9 )
3) (9a+9b)/c^6 *(3c^12)/(a^2-b^2 )
4) (5x+35)/(3x-1) :(x^2-49)/(6x-2)
2. Упростите выражение:
1) 3x/(x-5)-(x+3)/(6x-30)*450/(x^2+3x)
2) ((a-5)/(a+5)-(a+5)/(a-5)) :5a/(25-a^2 )
3. Докажите тождество:
(a/(a^2-2a+1)-(a+4)/(a^2-1)) :(a-2)/(a^2-1)=2/(1-a)
4. Известно, что 36x^2+1/x^2=13. Найдите значение выражения 6x+1/x.
Решение:
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{24b^{2}c}{a^{4}} \cdot \frac{a^{5}}{16bc^{3}} = \frac{24b^{2}c \cdot a^{5}}{a^{4} \cdot 16bc^{3}} =\]
\[= \frac{3ab}{2c^{2}}\]
\[2)\frac{40b}{c^{3}}\ :\left( 8b^{5}c^{9} \right) = \frac{40b}{c^{3} \cdot 8b^{5}c^{9}} =\]
\[= \frac{5}{b^{4}c^{12}}\]
\[3)\frac{9a + 9b}{c^{6}} \cdot \frac{3c^{12}}{a^{2} - b^{2}} =\]
\[= \frac{9(a + b) \cdot 3c^{12}}{c^{6}(a - b)(a + b)} = \frac{27c^{6}}{a - b}\]
\[4)\frac{5x + 35}{3x - 1}\ :\frac{x^{2} - 49\ }{6x - 2} =\]
\[= \frac{5x + 35}{3x - 1} \cdot \frac{6x - 2}{x^{2} - 49} =\]
\[= \frac{5(x + 7) \cdot 2(3x - 1)}{(3x - 1)(x - 7)(x + 7)} =\]
\[= \frac{10}{x - 7}\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{3x}{x - 5} - \frac{x + 3}{6x - 30} \cdot \frac{450}{x^{2} + 3x} =\]
\[= \frac{3x}{x - 5} - \frac{(x + 3) \cdot 450}{6(x - 5) \cdot x(x + 3)} =\]
\[= \frac{3x^{\backslash x}}{x - 5} - \frac{75}{x(x - 5)} = \frac{3x^{2} - 75}{x(x - 5)} =\]
\[= \frac{3 \cdot \left( x^{2} - 25 \right)}{x(x - 5)} =\]
\[= \frac{3(x - 5)(x + 5)}{x(x - 5)} = \frac{3x + 15}{x}\]
\[= \frac{- 20a\left( 25 - a^{2} \right)}{\left( a^{2} - 25 \right) \cdot 5a} =\]
\[= \frac{4(a^{2} - 25)}{a^{2} - 25} = 4\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[= \frac{(4 - 2a)\left( a^{2} - 1 \right)}{\left( a^{2} - 1 \right)(a - 1)(a - 2)} =\]
\[= \frac{- 2(a - 2)}{(a - 1)(a - 2)} =\]
\[= - \frac{2}{a - 1} = \frac{2}{1 - a}\]
\[\frac{2}{1 - a} = \frac{2}{1 - a}\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[36x^{2} + \frac{1}{x^{2}} = 13;\ \ \ \ 6x + \frac{1}{x} = ?\]
\[36x^{2} + 12x \cdot \frac{1}{x} + \frac{1}{x^{2}} =\]
\[= 13 + 12x \cdot \frac{1}{x}\]
\[\left( 6x + \frac{1}{x} \right)^{2} = 13 + 12\]
\[\left( 6x + \frac{1}{x} \right)^{2} = 25\]
\[6x + \frac{1}{x} = 5;\]
\[6x + \frac{1}{x} = - 5.\]
\[Ответ:\ - 5;\ \ 5.\]